Download miễn phí Đồ án Tổng quan về tình hình phát triển phong điện trên Thế Giới và Việt Nam





PHẦN 1: TỔNG QUAN VỀ NĂNG LƯỢNG GIÓ
1. Sự hình thành năng lượng gió
2. Vật lí học về năng lượng gió
3. Sử dụng năng lượng gió
4. Sản xuất điện từ năng lượng gió
Khuyến khích sử dụng năng lượng gió
Thóng kê
Công suất định mức lắp đặt trên Thế Giới
Công suất định mức lắp đặt tại Áo
Công suất định mức lắp đặt tại Đức
Công suất định mức lắp đặt tại Pháp
PHẦN 2: LỊCH SỬ TUABIN GIÓ
PHẦN 3: MÁY PHÁT ĐIỆN VÀ ĐIỆN TỬ CÔNG SUẤT CHO TUABIN GIÓ
3.1 Giới thiệu
3.2 Công nghệ tiên tiến
3.2.1/Tổng quan về cấu hình tuabin gió
3.2.1.1/ Tuabin gió tốc độ cố định
3.2.1.2/ Tuabin gió tốc độ biến đổi
3.2.1/ Tổng quan về các loại điều khiển điện năng
3.2.3/ Máy phát điện hiện đại
3.2.3.1 Loại A: tốc độ cố định
3.2.3.2 Loại B: thay đổi tốc độ hạn chế
3.2.3.3 Loại C: thay đổi tốc độ với bộ chuyển đổi tần số từng phần
3.2.3.4 Loại D: Biến tốc với bộ chuyển đổi tần số đầy đủ tỉ lệ
3.2.4 Điện tử công suất hiện đại
3.2.5 Xâm nhập thị trường hiện đại
3.3 Các loại máy phát điện
3.3.1 Máy phát điện không đồng bộ (cảm ứng)
3.3.1.1 Máy phát điện cảm ứng lồng sóc
3.3.1.2 Máy phát điện cảm ứng rotor dây quấn
3.3.2 Các máy phát điện đồng bộ
3.3.2.1 Máy phát điện đồng bộ rotor dây quấn
3.3.2.1 Máy phát điện đồng bộ rotor dây quấn
3.3.3 Các loại máy phát điện khác
3.3.3.1 Máy phát điện cao áp
3.3.3.2 Các máy phát điện từ hóa chuyển đổi
3.3.3.3 Máy phát điện ngang dòng
3.4 Các loại điện tử công suất
3.4.1 Khởi động mềm
3.4.2 Bộ tụ
3.4.3 Bộ chỉnh lưu và bộ biến điện - nghịch lưu
3.4.4 Chuyển đổi tần số - biến tần
3.5 Giải pháp điện tử công suất trong các trang trại gió
3.6 Kết luận
PHẦN 4: PHONG ĐIỆN TẠI VIỆT NAM
1. Tình hình cung cầu tại Việt Nam
2. Một số lựa chọn chính sách của Việt Nam
3. Giá thành của phong điện, liệu có đắt như định kiến
4. Những lợi ích về môi trường và xã hội của phong điện
5. Tiềm năng phong điện tại Việt Nam
6. Đề xuất một khu vực xây dựng phong điện tại Việt Nam
7. Lời kết
PHẦN 5: MỘT VÀI DỰ ÁN PHONG ĐIỆN TIÊU BIỂU
1. Phát triển phong điện tại Bình Định
2. Phát triển phong điện tại Bình Thuận
3. Đọc thêm
3.1 Lưới điện sử dụng năng lượng gió
3.2 Năng lượng gió ở châu Âu
3.3 Trạm phát điện kết hợp năng lượng gió và mặt trời
 
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

công suất phản kháng, công suất phản kháng cho máy phát điện phải được lấy trực tiếp từ lưới điện. Công suất phản kháng cung cấp bởi lưới điện gây ra tăng tổn thất truyền tải và trong những tình huống nhất định, có thể làm cho lưới điện không ổn định. Bộ tụ điện hay bộ chuyển đổi điện tử hiện đại có thể được sử dụng để giảm tiêu thụ công suất phản kháng. Những bất lợi chính là sự qus độ điện áp xảy ra trong quá trình chuyển đổi trong.   
Trong trường hợp lỗi, SCIGs mà không có bất kỳ hệ thống đền bù công suất phản kháng có thể dẫn đến tình trạng mất ổn định điện áp trên lưới điện (Van Custem và Vournas, 1998). Các rotor tua-bin gió có thể tăng tốc độ (độ trược tăng), ví dụ, khi một lỗi xảy ra, tạo ra sự mất cân đối giữa các mô-men xoắn cơ học và điện áp. Vì vậy, khi lỗi được xóa bỏ, SCIGs rút ra một số lượng lớn công suất phản kháng từ lưới điện, dẫn đến làm giảm hơn nữa trong điện áp. SCIGs có thể được sử dụng trong cả hai tuabin gió tốc độ cố định (loại A) và trong các tua-bin gió tốc độ thay đổi đầy đủ (loại D). Trong trường hợp thứ hai,bộ chuyển đổi tần số điện của động cơ được chuyển đổi sang tần số cố định bằng cách sử dụng một công cụ chuyển đổi năng lượng đầy tải hai chiều.
3.3.1.2 Máy phát điện cảm ứng rotor dây quấn
( Wound rotor induction generator )
  Trong trường hợp aWRIG, các đặc tính điện của rotor có thể được điều khiển từ bên ngoài, và do đó điện áp rotor có thể được đưa vào. Các cuộn dây của dây quấn rotor được kết nối bên ngoài thông qua các vòng trượt và chổi than hay bằng thiết bị điện điện tử, mà có thể có hay không có yêu cầu các vòng trượt và chổi than Bằng cách sử dụng thiết bị điện tử điện, năng lượng có thể được lấy ra hay đưa vào dòng ngắn mạch rotor và máy phát điện có thể được từ hóa từ dòng ngắn mạch rotor hay dòng ngắn mạch stator. Điều đó cũng có thể xảy ra nhờ phục hồi năng lượng trượt từ dòng ngắn mạch rotor và nạp vào từ đầu ra của stator. Những bất lợi của WRIG là nó đắt tiền hơn và không phải là mạnh mẽ như SCIG. Các ngành công nghiệp tuabin gió sử dụng phổ biến nhất là các cấu hình WRIG sau đây: (1) máy phát điện cảm ứng OptiSlip_ (OSIG), được sử dụng trong các khái niệm loại B và (2) loại máy phát điện hai lần cảm ứng (DFIG) , được sử dụng trong cấu hình Loại C (xem hình 3.1). . OptiSlip cảm ứng máy phát điện
Các chức năng OptiSlip_ đã được giới thiệu bởi các nhà sản xuất Đan Mạch Vestas để giảm thiểu tải trên các tuabin gió trong những cơn gió giật. Các chức năng OptiSlip_ cho phép máy phát điện có sự thay đổi độ trược (phạm vi hẹp) và lựa chọn độ trược tối ưu, kết quả là những biến động nhỏ hơn trong kiểm soát mô-men xoắn và công suất đầu ra. Thay đổi độ trược là một cách rất đơn giản, đáng tin cậy và chi phí hiệu quả để đạt được giảm tải so với các giải pháp phức tạp hơn như tua-bin gió có tốc độ thay đổi bằng cách sử dụng chuyển đổi tỉ lệ đầy đủ.
  OSIGs là WRIGs với một sự thay đổi điện trở ngoài rotor gắn liền với cuộn dây rotor (xem hình 3.1). Độ trượt của máy phát điện được thay đổi bằng cách thay đổi tổng trở rotor bằng phương tiện của một công cụ chuyển đổi, được gắn trên trục cánh quạt. Bộ chuyển đổi này là bộ điều khiển quang học,điều đó có nghĩa rằng không có vòng trượt là cần thiết. Stato của máy phát điện được kết nối trực tiếp vào lưới điện. Những lợi thế của loại máy phát điện này là cấu trúc liên kết mạch điện đơn giản, không cần các vòng trược và hoạt động một phạm vi tốc độ được cải thiện so với các SCIG. Để một mở rộng nhất định, loại này có thể làm giảm tải trọng cơ học và dao động năng lượng gây ra bởi cơn gió giật. Tuy nhiên, nó vẫn đòi hỏi một hệ thống bù công suất phản kháng. Những khó khăn là: (1) phạm vi tốc độ thường được giới hạn 0-10%, vì nó phụ thuộc vào biên độ thay đổi điện trở rotor (2) chỉ điều khiển công suất phản kháng và tác dụng là rất nhỏ, và (3) độ trược mất đi khi điện trở giảm
  . Doubly-fed induction generator( máy phát điện cảm ứng 2 lần)
Như mô tả trong Bảng 3.5, loại DFIG là một lựa chọn thú vị với sự phát triển của thị trường. Các DFIG bao gồm một WRIG với cuộn dây stato kết nối trực tiếp với lưới ba pha tần số không đổi và với các cuộn dây rotor gắn kết hai chiều qua lại công cụ chuyển đổi nguồn điện áp IGBT.
  Thuật ngữ " doubly fed ” đề cập đến một thực tế rằng điện áp trên stato được nhận từ lưới điện và điện áp trên rotor tạo ra bởi bộ chuyển đổi điện (power converter). Hệ thống này cho phép hoạt động tốc độ thay đổi trên một phạm vi lớn, nhưng hạn chế biên độ. Chuyển đổi bù đắp sự khác biệt giữa tần số cơ khí và điện bằng cách đưa một dòng rotor với một tần số biến đổi. Cả hai trong hoạt động bình thường và lỗi hành vi của máy phát điện là như vậy, chi phối bởi các công cụ chuyển đổi năng lượng và bộ điều khiển nó.
  Bộ chuyển đổi năng lượng bao gồm hai bộ chuyển đổi, chuyển đổi phía rotor và chuyển đổi phía lưới điện, và được điều khiển độc lập với nhau. Nó vượt ra ngoài phạm vi của chương này để đi vào chi tiết liên quan đến sự kiểm soát của các bộ chuyển đổi (để biết thêm chi tiết, xem Leonhard, năm 1980, Mohan, Undeland và Robbins, năm 1989; Pena, Clare và Asher, 1996). Ý tưởng chính là bộ chuyển đổi phía rotor là điều khiển công suất phản kháng và tác dụng bằng cách điều khiển các thành phần dòng điện rotor, trong khi bộ chuyển đối phía đường dây điều khiển điện áp DC và đảm bảo bộ chuyển đổi họat động liên kết( không tiêu thụ công suất phản kháng )
Tùy thuộc vào điều kiện hoạt động của bộ truyền động, điện được đưa vào hay lấy ra khỏi rotor: trong trường hợp siêu đồng bộ (oversynchronous), nó chảy từ các rotor thông qua bộ chuyển đổi tới lưới điện, trong khi nó chảy theo hướng ngược lại trong trường hợp cộng hưởng dưới đồng bộ( subsynchronous). Trong cả hai trường hợp subsynchronous và oversynchronous stato đưa điện vào lưới điện.
  DFIG có một số lợi thế. Nó có khả năng để kiểm soát công suất phản kháng và tách riêng công suất phản kháng và tác dụng điều khiển bằng bộ kích từ độc lập. DFIG không nhất thiết phải được từ hóa từ ( magnetised )lưới điện, nó cũng có thể được từ hóa từ dòng ngắn mạch rotor. Nó cũng có khả năng tạo ra công suất phản kháng có thể được ccaaps từ các stato bằng bộ chuyển đổi phía lưới. Tuy nhiên, bộ chuyển đổi phía lưới thường hoạt động bằng điện áp riêng và không tham gia vào việc trao đổi công suất phản kháng giữa các tua-bin và lưới điện. Trong trường hợp của một mạng lưới yếu ( không ổn định), nơi mà các điện áp có thể dao động, DFIG có thể được ra lệnh sản xuất hay hấp thụ một lượng công suất phản kháng lên hay xuống từ lưới điện, với mục đích kiểm soát điện áp.
  Kích thước của bộ chuyển đổi không liên quan với tổng đi
 

Các chủ đề có liên quan khác

Top