thuydu1984

New Member

Download miễn phí Báo cáo Tổng quan 3G - Thiết bị đầu cuối 3G





NỘI DUNG
1. TỔNG QUAN MẠNG 3G 5
1.1 Quá trình phát triển 3G 5
1.1.1. Lịch sử phát triển của truyền thông di động 5
1.1.2. Đặc điểm của hệ thống GSM 6
1.1.3 Thuận lợi và khó khăn của 2G 6
1.1.4 Bước đệm 2.5 G 6
1.1.5 Công nghệ đương đại 3G 7
1.2 Hệ thống 3G 7
1.2.1 Giới thiệu 7
1.2.2 Lộ trình phát triển từ Hệ thống thông tin di động 2G GSM sang hệ thống 3G WCDMA 8
2. Công nghệ đa truy nhập của WCDMA 15
2.1. Trải phổ và đa truy cập theo mã 15
2.2.1. Các hệ thống thông tin trải phổ 15
2.2.2. Áp dụng DSSS cho CDMA 17
2.2. Điều khiển công suất 20
3.GIAO DIỆN VÔ TUYẾN CỦA WCDMA UMTS 20
3.1 Tổng quan WCDMA 20
3.2 Kiến trúc ngăn xếp giao thức 21
3.3. Các thông số vật lý và quy hoạch tần số 23
3.4. Các kênh của WCDMA 28
3.5. Cấu trúc kênh vật lý riêng 36
3.6. Sơ đồ máy phát và máy thu WCDMA 38
3.7. Phân tập phát 39
3.8. Điều khiển công suất trong WCDMA 41
3.8.1. Thí dụ về điều khiển công suất vòng hở cho PRACH 42
3.8.2. Điều khiển công suất vòng kín đường lên 42
3.8.3. Điều khiển công suất vòng kín đường xuống 44
3.9. Các kiểu chuyển giao và báo cáo sự kiện trong WCDMA 44
3.9.1. Chuyển giao cứng 44
3.9.2. Chuyển giao mềm/ mềm hơn 45
3.10. Các thông số máy thu và máy phát của UE 46
3.11. AMR code cho WCDMA 47
4.Thiết bị đầu cuối 3G – NOKIA 9500 47
5.Tình hình phát triển của mạng 3G thực tế tại Việt Nam 50
 
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

như nhau tại đầu vào máy thu k. Hình 2.2a cho thấy sơ đồ giải trải phổ DSSS. Hình 2.2b cho thấy phổ của tín hiệu tổng được phát đi từ K máy phát sau trải phổ, hình 2.2c cho thấy phổ của tín hiệu này sau giải trải phổ tại máy thu k và hình 2.2d cho thấy phổ của tín hiệu sau bộ lọc thông thấp với băng thông băng Rb.
Hình 2. 5. Quá trình giải trải phổ và lọc tín hiệu của người sử dụng k từ K tín hiệu.
Từ hình 2.5 ta thấy tỷ số tín hiệu trên nhiễu (SIR: Signal to Interference Ratio) là tỷ số giữa diện tích hình chữ nhật được tô đậm trên hình 2.5.b và tổng diện tích các hình chữ nhật trắng trên hình 2.5.c: SIR=S1/S2. Tỷ số này tỷ lệ với tỷ số Rc/Rb. vì thế tỷ số Rc/Rb được gọi là độ lợi xử lý (TA: Processing Gain).
2.2. Điều khiển công suất
Trong trường hợp một máy phát gây nhiễu đến gần máy thu k (đến gần nút B chẳng hạn), công suất của máy phát này tăng cao dẫn đến MAI tăng cao, tỷ số tín hiệu trên nhiễu giảm mạnh và máy thu k không thể tách ra được tín hiệu của mình. Hiện tượng này được gọi là hiện tượng gần và xa. Để tránh hiện tượng này hệ thống phải điều khiển công suất sao cho công suất thu tại nút B của tất cả các UE đều bằng nhau (lý tưởng). Điều khiển công suất trong WCDMA được chia thành:
Điều khiển công suất vòng hở
Điều khiển công suất vòng kín
Điều khiển công suất vòng hở được thực hiện tự động tại UE khi nó thực hiện thủ tục xin truy nhập Nút B (dựa trên công suất mà nó thu được từ kênh hoa tiêu phát đi từ B), khi này UE chưa có kết nối với nút này. Còn điều khiển công suất vòng kín được thực hiện khi UE đã kết nối với nút B. Điều khiển công suất vòng hở lại được chia thành:
Điều khiển công suất vòng trong được thực hiện tại nút B. Điều khiển công suất vòng trong được thực hiện nhanh với 1500 lần trong một giây dựa trên so sánh SIR thu với SIR đích
Điều khiển công suất vòng ngoài được thực hiện tại RNC để thiết lập SIR đích cho nút B. Điều khiển công suất này dựa trên so sánh tỷ lệ lỗi khối (BLER) thu được với tỷ lệ đích.
3.GIAO DIỆN VÔ TUYẾN CỦA WCDMA UMTS
3.1 Tổng quan WCDMA
WCDMA UMTS là một trong các tiêu chuẩn của IMT-2000 nhằm phát triển của GSM để cung cấp các khả năng cho thế hệ ba. WCDMA UMTS sử dụng mạng đa truy nhập vô tuyến trên cơ sở W-CDMA và mạng lõi được phát triển từ GSM/GPRS. W-CDMA có thể có hai giải pháp cho giao diện vô tuyến: ghép song công phân chia theo tần số (FDD: Frequency Division Duplex) và ghép song công phân chia theo thời gian (TDD: Time Division Duplex). Cả hai giao diện này đều sử dụng trải phổ chuỗi trực tiếp (DS-CDMA). Giải pháp thứ nhất sẽ được triển khai rộng rãi còn giải pháp thứ hai chủ yếu sẽ được triển khai cho các ô nhỏ (Micro và Pico). Hiện nay mới chỉ có WCDMA/FDD được triển khai vì thế trong khóa học này ta sẽ chỉ xét WCDMA/FDD.
Giải pháp FDD sử dụng hai băng tần 5 MHz với hai sóng mang phân cách nhau 190 MHz: đường lên có băng tần nằm trong dải phổ từ 1920 MHz đến 1980 MHz, đường xuống có băng tần nằm trong dải phổ từ 2110 MHz đến 2170 Mhz. Mặc dù 5 MHz là độ rộng băng danh định, ta cũng có thể chọn độ rộng băng từ 4,4 MHz đến 5 MHz với nấc tăng là 200 KHz. Việc chọn độ rộng băng đúng đắn cho phép ta tránh được nhiễu giao thoa nhất là khi khối 5 MHz tiếp theo thuộc nhà khai thác khác.
Giải pháp TDD sử dụng các tần số nằm trong dải 1900 đến 1920 MHz và từ 2010 MHz đến 2025 MHz; ở đây đường lên và đường xuống sử dụng chung một băng tần.
Giao diện vô tuyến của W-CDMA/FDD (để đơn giản ta sẽ bỏ qua ký hiệu FDD nếu không xét đến TDD) hoàn toàn khác với GSM và GPRS, W-CDMA sử dung cách trải phổ chuỗi trực tiếp với tốc độ chip là 3,84 Mcps. Trong WCDMA mạng truy nhập vô tuyến được gọi là UTRAN (UMTS Terrestrial Radio Access Network). Các phần tử của UTRAN rất khác với các phần tử ở mạng truy nhập vô tuyến của GSM. Vì thế khả năng sử dụng lại các BTS và BSC của GSM là rất hạn chế. Một số nhà sản xuất cũng đã có kế hoạch nâng cấp các GSM BTS cho WCDMA. Đối với các nhà sản suất này có thể chỉ tháo ra một số bộ thu phát GSM từ BTS và thay vào đó các bộ thu phát mới cho WCDMA. Một số rất ít nhà sản suất còn lập kế hoạch xa hơn. Họ chế tạo các BSC đồng thời cho cả GSM và WCDMA. Tuy nhiên đa phần các nhà sản suất phải thay thế GSM BSC bằng RNC mới cho WCDMA.
W-CDMA sử dụng rất nhiều kiến trúc của mạng GSM, GPRS hiện có cho mạng của mình. Các phần tử như MSC, HLR, SGSN, GGSN có thể được nâng cấp từ mạng hiện có để hỗ trợ đồng thời WCDMA và GSM.
Giao diện vô tuyến của WCDMA/FDD được xây dựng trên ba kiểu kênh: kênh logic, kênh truyền tải và kênh vật lý. Kênh logic được hình thành trên cơ sở đóng gói các thông tin từ lớp cao trước khi sắp xếp vào kênh truyền tải. Nhiều kênh truyền tải được ghép chúng vào kênh vật lý. Kênh vật lý được xây dựng trên công nghệ đa truy nhập CDMA kết hợp với FDMA/FDD. Mỗi kênh vật lý được đặc trưng bởi một cặp tần số và một mã trải phổ. Ngoài ra kênh vật lý đường lên còn được đặc trưng bởi góc pha. Trong phần dưới đây ta trước hết ta xét kiến trúc giao thức của giao diện vô tuyến sau đó ta sẽ xét giao diện vô tuyến của WCDMA/FDD, sau đó sẽ xét các kênh này.
3.2 Kiến trúc ngăn xếp giao thức
Kiến trúc giao diện vô tuyến của WCDMA được cho trên hình 3.1.
UP: Mặt phẳng người sử dụng
CP: Mặt phẳng điều khiển
Hình 3. 1. Kiến trúc giao thức vô tuyến cho UTRA FDD.
Ngăn xếp giao thức của giao diện vô tuyến bao gồm 3 lớp giao thức:
Lớp vật lý (L1). Đặc tả các vấn đề liên quan đến giao diện vô tuyến như điều chế và mã hóa, trải phổ v.v..
Lớp liên kết nối số liệu (L2). Lập khuôn số liệu vào các khối số liệu và đảm bảo truyền dẫn tin cậy giữa các nút lân cận hay các thực thể đồng cấp
Lớp mạng (L3). Đặc tả đánh địa chỉ và định tuyến
Mỗi khối thể hiện một trường hợp của giao thức tương ứng. Đường không liền nét thể hiện các giao diện điều khiển, qua đó giao thức RRC điều khiển và lập cấu hình các lớp dưới.
Lớp 2 được chia thành các lớp con: MAC (Medium Access Control: Điều khiển truy nhập môi trường) và RLC (Radio link Control: điều khiển liên kết), PDCP (Packet Data Convergence Protocol: Giao thức hội tụ số liệu gói) và BMC (Broadcast/Multicast Control: Điều khiển quảng bá/đa phương ).
Lớp 3 và RLC được chia thành hai mặt phẳng: mặt phẳng điều khiển (C-Plane) và mặt phẳng người sử dụng (U-Plane). PDCP và BMC chỉ có ở mặt phẳng U.
Trong mặt phẳng C lớp 3 bao gồm RRC (Radio Resource Control: điều khiển tài nguyên vô tuyến) kết cuối tại RAN và các lớp con cao hơn: MM (Mobility Management) và CC (Connection Management), GMM (GPRS Mobility Management), SM (Session Management) kết cuối tại mạng lõi (CN).
Lớp vật lý là lớp thấp nhất ở giao diện vô tuyến. Lớp vật lý được sử dụng để truyền dẫn ở giao diện vô tuyến. Mỗi kênh vật lý ở lớp này được xác định bằng một tổ hợp tần số, mã ngẫu nhiên hoá (mã định kênh) và pha (chỉ cho đường lên). Các kênh được sử dụng vật lý để truyền thông tin của các lớp cao trên giao diện vô tuyến, tuy nhiên cũng có một số kênh vật lý chỉ được dành ch...
 

Các chủ đề có liên quan khác

Top