khucdotri

New Member

Download miễn phí Tổng quan hệ thống đồng hóa lọc Kalman tổ hợp và ứng dụng cho mô hình dự báo thời tiết WRF





Về mặt bản chất, lọc EnKF chuỗi (SEnKF) là quá trình trong đó số liệu quan trắc được
đồng hóa lần lượt từng giá trị một. Quá trình này sẽ làm giảm kích thước cũng như khối
lượng tính toán. Trong phần này, chúng tôi sẽ theo trình bày trong [17] (viết tắt là SZ03) do
cách tiếp cận của SZ03 có tính ứng dụng cao và đã được sử dụng trong một loạt các bài toán
đồng hóa quy mô vừa. Để thảo luận được rõ ràng, chúng ta viết lại phương trình cập nhật
trạng thái phân tích như sau:



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

một trạng
thái ban đầu mới và sai số của trạng thái ban
đầu này cho quá trình dự báo tiếp theo. Chúng
ta sẽ đi vào từng quá trình một cách chi tiết hơn
trong các phần tiếp theo.
Bước dự báo
Giả thiết khí quyển tại một thời điểm i nào
đó được đặc trưng bởi một trạng thái
a
ix
với
một sai số
a

. Đầu tiên chúng ta sẽ dự báo cho
trạng thái đến thời điểm i + 1 sẽ cho bởi:
)(1
a
i
f
i M xx 
(1)
trong đó M là mô hình dự báo. Do mô hình này
là không hoàn hảo, dự báo bằng mô hình này sẽ
có một sai số nào đó kể cả khi điều kiện ban
đầu là chính xác. Gọi sai số nội tại này của mô
hình là , khi đó một cách lý thuyết giá trị sai
số này sẽ được xác định như sau:
 )(1 titi M xx
(2)
trong đó
t
ii )1( x
là trạng thái thực của khí quyển
tại thời điểm i (i + 1). Chúng ta sẽ giả thiết rằng
sai số nội tại này là không lệch và ma trận sai
số hiệp biến của nó được cho bởi một ma trận
Q, nghĩa là
 T Q;0
(3)
Song song với dự báo trạng thái, chúng ta
sẽ dự báo cả sai số từ thời điểm thứ i đến thời
điểm thứ i + 1 sử dụng mô hình tiếp tuyến L
được định nghĩa dựa trên dạng biến phân của
phương trình (1) như sau:
iii
M
xxLx
x
x
x  )()(1 



(4)
Với mô hình tiếp tuyến L này, sai số của
trạng thái tại thời điểm thứ i + 1 sẽ được cho
bởi
i
a
ii εxLε )(1 
(5)
Trong thực tế, chúng ta không bao giờ biết
được sai số tuyệt đối thực i và như thế không
thể dự báo được sai số cho bước tiếp theo. Tuy
nhiên, trong đa số các trường hợp, chúng ta lại
có thể biết hay xấp xỉ được đặc trưng thống kê
của sai số được đặc trưng bởi ma trận sai số
hiệp biến P  . Thêm vào đó, ma trận này
cũng sẽ được sử dụng để đồng hóa cho bước
tiếp theo. Do đó, chúng ta sẽ viết lại (5) cho ma
trận sai số hiệp biến thay vì cho sai số tuyệt đối
i. Lưu ý theo định nghĩa rằng
t
i
f
i
f
i xxε 
,
t
i
a
i
a
i xxε 
chúng ta sẽ có mối quan hệ sau
QLLP
η)εLη)εL
xxxxεεP
T


 
Ta
i
a
i
a
i
Tt
i
f
i
t
i
f
i
T
ii
f
i
((
))(( 11111
(6)
Chú ý thêm rằng chúng ta đã giả thiết là sai
số mô hình  và sai số trạng thái
a

là không
có tương quan với nhau. Như vậy, cho trước giá
trị sai số mô hình Q, mô hình M, và mô hình
tiếp tuyến L, phương trình (2) và (6) cấu thành
một quá trình dự báo cơ bản trong bước dự báo
K.Q. Chánh / Tạp chí Khoa học ĐHQGHN, Khoa học Tự nhiên và Công nghệ 27, Số 1S (2011) 17-28
20
theo đó trạng thái
a
ix
và sai số
a

tại thời điểm i
sẽ được dự báo đến thời điểm i + 1.
Bước phân tích
Trong bước phân tích tiếp theo, giả sử tại
thời điểm i + 1, chúng ta có một bộ số liệu quan
trắc yo với sai số quan trắc là o. Nhiệm vụ của
chúng ta trong bước này là phải kết hợp được
trạng thái dự báo
f
i 1x
và sai số
f
i 1P
với quan
trắc để tạo được một bộ số liệu đầu vào mới tốt
hơn tại thời điểm i + 1. Lưu ý rằng mặc dù
a
ix
là ước lượng tốt nhất của trạng thái khí
quyển tại thời điểm i, giá trị dự báo
f
i 1x
tại thời
điểm i + 1 lại không phải là tốt nhất do sai số
của mô hình và của
a
ix
. Do đó chúng ta cần
phải đồng hóa tại thời điểm i + 1 để trạng thái
dự báo không bị lệch khỏi trạng thái thực tại
các thời điểm này. Một cách hình thức, chúng ta
sẽ ước lượng trạng thái khí quyển mới tốt hơn
tại thời điểm i + 1 như sau:
)]([ 111
f
i
of
i
a
i H   xyKxx
(7)
trong đó H là một toán tử quan trắc nội suy từ
trường mô hình sang các giá trị điểm lưới, và K
là ma trận trọng số. Một cách trực quan, ma trận
K càng lớn, ảnh hưởng của quan trắc lên trường
phân tích càng nhiều. Do đó, ma trận K rất
quan trọng và phải được dẫn ra một cách tối ưu
nhất có thể. Để thuận tiện cho việc suy dẫn K,
chúng ta định nghĩa một vài biến sai số sau:
t
i
a
i
a
i xxε 
,
t
i
f
i
f
i xxε 
,
)( ti
oo
i H xyε 
(8)
Để tìm ma trận K, chúng ta trước hết phải
tính ma trận sai số hiệp biến Pa cho trạng thái
phân tích
a
i 1x
và sau đó cực tiểu hóa ma trận
này. Theo định nghĩa:




T
Ta
i
)(
)1
t
1i
a
1i
t
1i
a
1i
a
1i
a
1i
x-x)(x-x
(εεP (9)
Thay (7) vào (9) và xắp xếp lại, chúng ta sẽ
thu được:
    
Ta
i )εH-εKε)εH-εKεP
f
1i
o
1i
f
1i
f
1i
o
1i
f
1i ((((1
(10)
trong đó ma trận H là tuyến tính hóa của toán tử
quan trắc H.
Đặt
 
Tf
i )1
f
1i
f
1i (εεP
,
 
T)o 1i
o
1i (εεR
,
và giả thiết trạng thái nền không có tương quan
với trạng thái phân tích, chúng ta sẽ thu được từ
(10) phương trình sau:
TTf
i
a
i KRKKHIPKHIP   )()( 11
(11)
Ma trận trọng số K sẽ cực tiểu hóa vết của
ma trận sai số
a
i 1P
khi và chỉ khi
0))(( 1 



a
itrace P
K
(12)
trong đó trace() ký hiệu vết của ma trận. Ở đây,
đạo hàm theo ma trận sẽ được hiểu là đạo hàm
từng thành phần của ma trận. Lý do cho việc
cực tiểu hóa vết của ma trận thay vì trực tiếp ma
trận là do tổng các thành phần trên đường chéo
của ma trận
a
i 1P
sẽ chính là bình phương của
tổng sai số căn quân phương trong trường hợp
các biến là không tương quan chéo. Do vết của
một ma trận là bảo toàn trong các phép biến đổi
trực chuẩn, chúng ta luôn có thể chéo hóa ma
trận sai số
a
i 1P
để đưa về một cơ sở mà trong
đó tổng sai số căn quân phương sẽ là tổng của
các thành phần đường chéo. Lấy đạo hàm vết
của ma trận
a
i 1P
, chúng ta khi đó sẽ thu được
từ (11) và (12)
1
11 )(

 
Tf
i
Tf
i HHPRHPK
(13)
Với giá trị ma trận trọng số K cho bởi (13)
ở trên, giá trị cực tiểu của ma trận sai số hiệp
biến phân tích khi đó sẽ thu được bằng cách
thay (13) vào (11). Biến đổi tường minh chúng
ta sẽ thu được:
.)( 11
f
i
a
i   PKHIP
(14)
K.Q. Chánh / Tạp chí Khoa học ĐHQGHN, Khoa học Tự nhiên và Công nghệ 27, Số 1S (2011) 17-28
21
Như vậy, ở bước phân tích này chúng ta đã
thu được một ước lượng ban đầu mới tốt hơn từ
một trạng thái dự báo (hay dự báo nền) và quan
trắc cho trước. Sau khi thu được trạng thái mới
a
i 1x
và ma trận sai số mới
a
i 1P
, quá trình dự
báo lại được lặp lại cho bước đồng hóa kế tiếp
theo. Một cách tóm tắt, lọc Kalman được cho
bởi minh họa trong hình 1.
Hình 1. Minh họa hai bước chính của bộ lọc Kalman.
Mặc dù có ưu điểm vượt trội so với các
phương pháp đồng hóa biến phân khác, lọc
Kalman cho bởi hệ các phương trình (1), (6),
(7), (13), (14) lại rất khó áp dụng trực tiếp trong
các mô hình thời tiết có tính phi tuyến cao và
bậc tự do rất lớn. Ba khó khăn chính của bộ lọc
Kalman ở trên là 1) xây dựng mô hình tiếp
tuyến L; 2) lưu trữ và thao tác các ma các trận
sai số với số chiều có kích thước quá lớn; và 3)
sai số nội tại của mô hình Q không được biết
đầy đ
 

Các chủ đề có liên quan khác

Top