lovebus_vn

New Member

Download miễn phí Công nghệ chuyển mạch nhãn đa giao thức





MỤC LỤC
THUẬT NGỮ VÀ TỪ VIẾT TẮT i
LỜI NÓI ĐẦU iii
CHƯƠNG 1 GIỚI THIỆU VỀ CÔNG NGHỆ MPLS 1
1.1 Xu hướng phát triển dịch vụ 1
1.2 Xu hướng phát triển công nghệ mạng 3
1.2.1 Định tuyến và chuyển mạch gói truyền thống 3
1.2.2 Công nghệ mạng dựa trên giao thức IP 3
1.2.3 Công nghệ ATM 4
1.2.4 IP và ATM 4
So sánh giữa IP và ATM 4
Giải pháp sử dụng mô hình xếp chồng 6
1.3 Sự ra đời công nghệ MPLS 8
1.3.1 Chuyển mạch nhãn là gì? 8
1.3.2 Tại sao sử dụng MPLS? 10
Tốc độ và trễ 10
Khả năng mở rộng mạng 11
Tính đơn giản 11
Sử dụng tài nguyên 12
Điều khiển đường đi 12
CHƯƠNG 2 CÔNG NGHỆ MPLS 14
2.1 Một số vấn đề cơ bản 14
2.1.1 Các thuật ngữ, định nghĩa sử dụng trong MPLS 14
2.1.2 Một sồ vấn đề liên quan đến nhãn (Label) 16
Không gian nhãn 16
Sự duy nhất của nhãn trong không gian nhãn 17
Ngăn xếp nhãn 19
Sự duy trì nhãn 22
Tổng hợp FEC 23
Hợp nhất nhãn 25
2.1.3 Một số vấn đề liên quan đến ràng buộc nhãn (FEC/Label) 26
Các phương pháp ràng buộc nhãn với FEC 26
Các chế độ điều khiển ràng buộc nhãn với FEC 27
Phân bổ ràng buộc nhãn không theo yêu cầu và theo yêu cầu 29
2.2 Các loại thiết bị trong mạng MPLS 30
2.3 Các chế độ hoạt động của MPLS 32
2.3.1 Chế độ khung 32
2.3.2 Chế độ tế bào 33
2.4 Các giao thức phân bổ nhãn 35
2.4.1 Giao thức phân phối nhãn LDP 35
Giới thiệu 35
Các loại bản tin LDP 36
Thủ tục thăm dò LSR lân cận 37
Các bản tin LDP 38
Phát hành và sử dụng nhãn 43
2.4.2 Giao thức RSVP với việc phân bổ nhãn 48
2.4.3 Giao thức BGP với việc phân bổ nhãn 54
2.5 Định tuyến trong mạng MPLS. 55
2.5.1 Định tuyến cưỡng bức (CR) với CR-LDP 56
Khái niệm 56
Định tuyến hiện (ER) và định tuyến cưỡng bức (CR) 57
LDP và định tuyến cưỡng bức (CR) 58
Thuật toán định tuyến cưỡng bức 58
Các bản tin và các TLV sử dụng trong CR 62
CHƯƠNG 3 ỨNG DỤNG CỦA CÔNG NGHỆ MPLS 71
3.1 Mạng thế hệ kế tiếp (NGN) của Tổng công ty BCVT Việt Nam 71
3.1.1 Mở đầu 71
3.1.2 Cấu trúc phân lớp chức năng NGN 72
3.1.2 Nguyên tắc tổ chức mạng 72
3.1.3 Tổ chức các lớp chức năng trong NGN 73
Tổ chức lớp ứng dụng và lớp dịch vụ mạng 73
Tổ chức lớp điều khiển 74
Tổ chức lớp truyền tải 74
Tổ chức lớp truy nhập 74
3.1.4 Kết nối NGN với các mạng hiện thời 74
Kết nối với mạng PSTN 74
Kết nối với mạng Internet 75
3.1.5 Lộ trình chuyển đổi sang NGN 76
3.2 Khả năng ứng dụng MPLS tại Việt Nam 78
3.2.1 Những điểm cơ bản trong định hướng phát triển của ngành viễn thông Việt Nam 78
3.2.2 Các công nghệ và triển vọng triển khai 78
1. Công nghệ IP 79
2. Công nghệ ATM 79
3. Công nghệ MPLS 79
3.2.3 Các giải pháp ứng dụng MPLS 80
1. Giải pháp 1: MPLS trong mạng lõi 81
2. Giải pháp 2: ATM lõi, MPLS ở các tổng đài đa dịch vụ 83
3. Giải pháp 3: Mạng MPLS hoàn toàn 86
4. Đánh giá các giải pháp 88
KẾT LUẬN 89
TÀI LIỆU THAM KHẢO 90
 
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

g, chỉ các nhãn bên ngoài được kiểm tra. LSR sử dụng nhãn để chuyển tiếp các gói trong mặt phẳng dữ liệu, các nhãn này trước đó được chỉ định và phân bổ trong mặt phẳng điều khiển. Khuôn dạng tiêu đề nhãn có dạng như hình 2.15.
Link Layer MPLS SHIM Network Layer Other Layers Headers
Header Header and data
32 bits
Label Exp BS TTL
20 bits
3 bits
1 bits
8 bits
Hình 2.18. Khuôn dạng tiêu đề nhãn
PPP header Shim Header Layer 3 Header
MAC header Shim Header Layer 3 Header
Label
PPP Header
(Packet over SONET/SDH)
LAN MAC Header
T¹o nh·n
Hình 2.16. PPP/Ethernet là lớp liên kết dữ liệu
Ngoài 20 bit giá trị nhãn như đã biết, 12 bit còn lại có ý nghĩa như sau:
Exp (Experimental) – Các bit Exp được dự trữ về mặt kỹ thuật cho sử dụng thực tế. Chẳng hạn Cisco sử dụng những bit này để giữ bộ chỉ thị QoS - thường là một bản sao trực tiếp của các bit chỉ thị độ ưu tiên trong gói IP. Khi các gói MPLS bị xếp hàng, có thể sử dụng các bit Exp như cách sử dụng các bit chỉ thị độ ưu tiên IP.
BS (Bottom of stack) – Có thể có hơn 1 nhãn với 1 gói. Bit này dùng để chỉ thị cho nhãn ở cuối ngăn xếp nhãn. Nhãn ở đáy của ngăn xếp nhãn có giá trị BS bằng 1. Các nhãn khác có giá trị bit BS bằng 0.
TTL (Time To Live) – Thông thường các bit TTL là một bản sao trực tiếp của các bit TTL trong tiêu đề gói IP. Chúng giảm giá trị đi 1 đơn vị khi gói đi qua mỗi chặng để tránh lặp vòng vô hạn. TTL cũng có thể được sử dụng khi các nhà điều hành mạng muốn dấu cấu hình mạng nằm bên dưới.
2.3.2 Chế độ tế bào
Chế độ tế bào là thuật ngữ được sử dụng khi chúng ta có 1 mạng các chuyển mạch ATM hay mạng FR sử dụng MPLS trong mặt phẳng điều khiển để hoán đổi thông tin VCI/VPI thay cho việc sử dụng báo hiệu ATM hay báo hiệu FR.
Ip header Data
VPI/VCI Data
Shim header Ip header Data
VPI/VCI Data
……
Gãi IP
T¹o nh·n
TÕ bµo ATM
Hình 2.17. ATM là lớp liên kết dữ liệu
Ip header Data
DLCI Data
Shim header Ip header Data
DLCI Data
……
Gãi IP
T¹o nh·n
C¸c khung FR
Hình 2.18. FR là lớp liên kết dữ liệu
Trong chế độ tế bào, nhãn dược mã hoá trong các trường VPI/VCI hay DLCI (xem hình 2.17 và hình 2.18). Sau khi quá trình trao đổi thông tin nhãn được thực hiện trong mặt phẳng điều khiển, trong mặt phẳng chuyển tiếp, router lối vào phân chia các gói vào trong các tế bào ATM, dán nhãn cho chúng và thực hiện truyền. Các ATM LSR trung gian xử lý các gói như một chuyển mạch ATM thông thường–chúng chuyển tiếp tế bào dựa trên giá trị VPI/VCI và thông tin cổng vào. Cuối cùng, router lối ra tổng hợp các cell trở lại thành gói.
Chế độ tế bào còn được gọi là ATM được điều khiển nhãn (LC-ATM).
2.4 Các giao thức phân bổ nhãn
MPLS không yêu cầu phải có giao thức phân bổ nhãn riêng, vì một vài giao thức định tuyến đang được sử dụng (OSPF) có thể hỗ trợ phân bổ nhãn. Tuy nhiên, IETF đã phát triển một giao thức mới để bổ sung cho MPLS. Được gọi là giao thức phân bổ nhãn LDP.
Một giao thức khác, LDP cưỡng bức (CR-LDP), cho phép các nhà quản lý mạng thiết lập các đường đi chuyển mạch nhãn (LSP) một cách rõ ràng (tường minh). CR-LDP là một sự mở rộng của LDP. Nó hoạt động độc lập với mọi giao thức cổng đường biên bên trong (IGP) khác. Nó được sử dụng cho các dòng lưu lượng nhạy cảm với trễ và mô phỏng mạng chuyển mạch kênh.
RSVP cũng có thể được sử dụng để phân phối nhãn. bằng việc sử dụng các bản tin Reservation và PATH (mở rộng), nó hỗ trợ các hoạt động ràng buộc và phân bổ nhãn.
BGP cũng là một sự lựa chọn tốt cho giao thức phân bổ nhãn. Nếu cần ràng buộc nhãn với prefix địa chỉ, thì BGP có thể được sử dụng. Một bộ phản hồi (reflector) BGP có thể được sử dụng để phân bổ nhãn.
2.4.1 Giao thức phân phối nhãn LDP
Giới thiệu
Giao thức phân phối nhãn được IETF đưa ra trong RFC 3036. Vị trí của giao thức LDP và các mối liên kết chức năng cơ bản của LDP với các giao thức khác thể hiện trên hình 2.19.
LDP có thể hoạt động giữa các LSR kết nối trực tiếp hay không được kết nối trực tiếp. Các LSR sử dụng LDP để hoán đổi thông tin ràng buộc FEC và nhãn được gọi là các thực thể đồng cấp LDP; chúng hoán đổi thông tin này bằng việc xây dựng các phiên LDP.
Hình 2.19. Vị trí giao thức LDP trong bộ giao thức MPLS
Các loại bản tin LDP
LDP định nghĩa 4 loại bản tin đó là: Bản tin thăm dò, Bản tin phiên, Bản tin phát hành, Bản tin thông báo. Bốn loại bản tin này cũng nói lên chức năng mà nó thực hiện.
Bản tin thăm dò (Discovery): dùng để thông báo và duy trì sự có mặt của 1 LSR trong mạng. Theo định kỳ, LSR gửi bản tin Hello qua cổng UDP với địa chỉ multicast của tất cả các router trên mạng con.
Bản tin phiên (Session): dùng để thiết lập, duy trì, và xoá các phiên giữa các LSR. Hoạt động này yêu cầu gửi các bản tin Initialization trên TCP. Sau khi hoạt động này hoàn thành các LSR trở thành các đối tượng ngang cấp LDP
Bản tin phát hành (Advertisement): dùng để tạo, thay đổi và xoá các ràng buộc nhãn với các FEC. Những bản tin này cũng mang trên TCP. Một LSR có thể yêu cầu 1 ánh xạ nhãn từ LSR lân cận bất cứ khi nào nó cần. Nó cũng phát hành các ánh xạ nhãn bất cứ khi nào nó muốn một đối tượng ngang cấp LDP nào đó sử dụng ràng buộc nhãn.
Bản tin thông báo (Notification): dùng để cung cấp các thông báo lỗi, thông tin chẩn đoán, và thông tin trạng thái. Những bản tin này cũng mang trên TCP.
Đa số các bản tin LDP chạy trên giao thức TCP để đảm bảo độ tin cậy của các bản tin. (ngoại trừ bản tin thăm dò).
Thủ tục thăm dò LSR lân cận
Thủ tục LSR lân cận của LDP chạy trên UDP và thực hiện như sau (minh hoạ trên hình 2.20).
Một LSR định kỳ gửi bản tin Hello tới tất cả giao diện của nó. Những bản tin này được gửi trên UDP, với địa chỉ multicast của tất cả router trên mạng con.
Tất cả các LSR tiếp nhận bản tin Hello này trên cổng UDP. Như vậy, tại một thời điểm nào đó LSR sẽ biết được tất cả các LSR khác mà nó có kết nối trực tiếp.
Khi LSR nhận biết được địa chỉ của LSR khác bằng cơ chế này thì nó sẽ thiết lập kết nối TCP đến LSR đó.
Khi đó phiên LDP được thiết lập giữa 2 LSR. Phiên LDP là phiên hai chiều có nghĩa là mỗi LSR ở hai đầu kết nối đều có thể yêu cầu và gửi ràng buộc nhãn.
Trong trường hợp các LSR không kết nối trực tiếp trong một mạng con, người ta sử dụng một cơ chế bổ sung như sau:
LSR định kỳ gửi bản tin Hello trên UDP đến địa điạ chỉ IP đã được khai báo khi lập cấu hình. Phía nhận bản tin này có thể trả lời lại bằng bản tin HELLO khác truyền ngược lại đến LSR gửi và việc thiết lập các phiên LDP được thực hiện như trên.
Hình 2.20. Thủ tục phát hiện LSR lân cận
Các bản tin LDP
Tiêu đề bản tin LDP
Mỗi một bản tin LDP được gọi là đơn vị dữ liệu giao thức PDU, được bắt đầu bằng tiêu đề bản tin và sau đó là các bản tin LDP như đã trình bày trên đây. Hình 2.21 chỉ ra các trường chức năng của tiêu đề LDP và các trường này thực hiện các chức năng sau:
Phiên bản: Số phiên bản của giao thức, hiện tại là phiên bản 1.
Độ dài PDU: Tổng độ dài của PDU tính theo octet, không tính trường phiên bản và trường độ dài.
Nhận dạng LDP: Nhận dạng không gian n...
 
Các chủ đề có liên quan khác

Các chủ đề có liên quan khác

Top