Download miễn phí Chuyên đề ôn thi Đại học - Phương pháp tọa độ trong không gian





1. CÁC BÀI TOÁN VỀ HÌNH CHÓP TAM GIÁC
 
Bài 1 (Trích đề thi Đại học khối D – 2002). Cho tứ diện ABCD có cạnh AD vuông góc (ABC), AC = AD = 4cm, AB = 3cm, BC = 5cm. Tính khoảng cách từ đỉnh A đến (BCD).
Bài 2. Cho ABC vuông tại A có đường cao AD và AB = 2, AC = 4. Trên đường thẳng vuông góc với (ABC) tại A lấy điểm S sao cho SA = 6. Gọi E, F là trung điểm của SB, SC và H là hình chiếu của A trên EF.
1. Chứng minh H là trung điểm của SD.
2. Tính cosin của góc giữa hai mặt phẳng (ABC) và (ACE).
3. Tính thể tích hình chóp A.BCFE.
Bài 3. Cho hình chóp O.ABC có các cạnh OA = OB = OC = 3cm và vuông góc với nhau từng đôi một. Gọi H là hình chiếu của điểm O lên (ABC) và các điểm A’, B’, C’ lần lượt là hình chiếu của H lên (OBC), (OCA), (OAB).
1. Tính thể tích tứ diện HA’B’C’.
2. Gọi S là điểm đối xứng của H qua O. Chứng tỏ S.ABC là tứ diện đều.
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

CHUYÊN ĐỀ
PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
I. PHƯƠNG PHÁP GIẢI TOÁN
Để giải được các bài toán hình không gian bằng phương pháp tọa độ ta cần chọn hệ trục tọa độ thích hợp. Lập tọa độ các đỉnh, điểm liên quan dựa vào hệ trục tọa độ đã chọn và độ dài cạnh của hình.
PHƯƠNG PHÁP
Bước 1: Chọn hệ trục tọa độ Oxyz thích hợp. (Quyết định sự thành công của bài toán)
Bước 2: Xác định tọa độ các điểm có liên quan.
Bước 3: Sử dụng các kiến thức về tọa độ để giải quyết bài toán.
Các dạng toán thường gặp:
Định tính: Chứng minh các quan hệ vuông góc, song song, …
Định lượng: Độ dài đoạn thẳng,, góc, khoảng cách, tính diện tích, thể tích, diện tích thiết diện, …
Bài toán cực trị, quỹ tích.
……………
Ta thường gặp các dạng sau
1. Hình chóp tam giác
a. Dạng tam diện vuông
z
A
y
C
N
O
M
a
x
B
Ví dụ : Cho tứ diện OABC có đáy OBC là tam giác vuông tại O, OB=a, OC=, (a>0) và đường cao OA=. Gọi M là trung điểm của cạnh BC. Tính khoảng cách giữa hai đường thẳng AB và OM.
Cách 1:
Chọn hệ trục tọa độ như hình vẽ. Khi đó O(0;0;0), , gọi N là trung điểm của AC Þ.
MN là đường trung bình của tam giác ABC Þ AB // MN
Þ AB //(OMN) Þ d(AB;OM) = d(AB;(OMN)) = d(B;(OMN)).
, với .
Phương trình mặt phẳng (OMN) qua O với vectơ pháp tuyến
O
A
C
N
M
a
B
Ta có: . Vậy,
Cách 2:
Gọi N là điểm đối xứng của C qua O.
Ta có: OM // BN (tính chất đường trung bình).
Þ OM // (ABN)
Þ d(OM;AB) = d(OM;(ABN)) = d(O;(ABN)).
Dựng
Ta có:
Từ các tam giác vuông OAK; ONB có:
. Vậy,
b. Dạng khác
Ví dụ 1: Tứ diện S.ABC có cạnh SA vuông góc với đáy và vuông tại C. Độ dài của các cạnh là SA =4, AC = 3, BC = 1. Gọi M là trung điểm của cạnh AB, H là điểm đối xứng của C qua M.
Tính cosin góc hợp bởi hai mặt phẳng (SHB) và (SBC).
x
4
z
y
M
B
A
H
S
C
K
I
Hướng dẫn giải
Chọn hệ trục tọa độ như hình vẽ, ta có:
A(0;0;0), B(1;3;0), C(0;3;0), S(0;0;4) và H(1;0;0).
mp(P) qua H vuông góc với SB tại I cắt đường thẳng SC tại K, dễ thấy
(1).
, suy ra:
ptts SB: , SC: và (P): x + 3y – 4z – 1 = 0.
= …
Chú ý: Nếu C và H đối xứng qua AB thì C thuộc (P), khi đó ta không cần tìm K.
Ví dụ 2: Cho hình chóp SABC có đáy là tam giác ABC vuông cân tại A, AB = AC = a (a > 0), hình chiếu của S trên đáy trùng với trọng tâm G của DABC. Đặt SG = x (x > 0). Xác định giá trị của x để góc phẳng nhị diện (B, SA, C) bằng 60o.
Cách 1:
z
x
x
y
C
B
A
E
F
G
M
Gọi M là trung điểm của BC .
Gọi E, F lần lượt là hình chiếu của G lên AB, AC. Tứ giác AEGF là hình vuông
Dựng hệ trục tọa độ Axyz, với Ax, Ay, Az đôi một vuông góc, A(0;0;0), B(a;0;0), C(0; a; 0), .
, với
với .
Mặt phẳng (SAB) có cặp vectơ chỉ phương nên có vectơ pháp tuyến .
Mặt phẳng (SAC) có cặp vectơ chỉ phương nên có vectơ pháp tuyến .
Góc phẳng nhị diện (B; SA; C) bằng 60o.
G
M
C
S
I
A
B
Vậy,
Cách 2:
Gọi M là trung điểm của BC (DABC vuông cân)
Ta có: . Suy ra:
Dựng và là góc phẳng nhị diện (B; SA; C).
cân tại I.
.
.
Ta có: .
Vậy,
Ví dụ 3: (Trích đề thi Đại học khối A – 2002). Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy là a. Gọi M, N là trung điểm SB, SC. Tính theo a diện tích DAMN, biết (AMN) vuông góc với (SBC).
Hướng dẫn giải
Gọi O là hình chiếu của S trên (ABC), ta suy ra O là trọng tâm . Gọi I là trung điểm của BC, ta có:
Trong mặt phẳng (ABC), ta vẽ tia Oy vuông góc với OA. Đặt SO = h, chọn hệ trục tọa độ như hình vẽ ta được:
z
a
x
y
h
M
N
O
I
C
A
B
S
O(0; 0; 0), S(0; 0; h), , ,
, và .
,
.
2. Hình chóp tứ giác
a) Hình chóp S.ABCD có SA vuông góc với đáy và đáy là hình vuông (hay hình chữ nhật). Ta chọn hệ trục tọa độ như dạng tam diện vuông.
b) Hình chóp S.ABCD có đáy là hình vuông (hay hình thoi) tâm O đường cao SO vuông góc với đáy. Ta chọn hệ trục tọa độ tia OA, OB, OS lần lượt là Ox, Oy, Oz. Giả sử SO = h, OA = a, OB = b ta có
O(0; 0; 0), A(a; 0; 0), B(0; b; 0), C(–a; 0; 0), D(0;–b; 0), S(0; 0; h).
z
x
y
A
D
D'
C'
B
B'
C
A'
c) Hình chóp S.ABCD có đáy hình chữ nhật ABCD và AB = b. đều cạnh a và vuông góc với đáy. Gọi H là trung điểm AD, trong (ABCD) ta vẽ tia Hy vuông góc với AD. Chọn hệ trục tọa độ Hxyz ta có: H(0; 0; 0),
3. Hình lăng trụ đứng
Tùy theo hình dạng của đáy ta chọn hệ trục như các dạng trên.
Ví dụ: 1. Cho hình lập phương ABCD A'B'C'D' cạnh a. Chứng minh rằng AC' vuông góc với mặt phẳng (A'BD).
Lời giải:
Chọn hệ trục tọa độ Oxyz sao cho O º A; B Î Ox; D Î Oy và A' Î Oz .
Þ A(0;0;0), B(a;0;0), D(0;a;0), A'(0;0;a), C'(1;1;1)Þ Phương trình đoạn chắn của mặt phẳng(A'BD): x + y + z = a hay x + y + z –a = 0
ÞPháp tuyến của mặt phẳng (A'BC): và .
Vậy AC' vuông góc với (A'BC)
2. Cho lăng trụ ABC.A'B'C' các các mặt bên đều là hình vuông cạnh a. Gọi D, F lần lượt là trung điểm của các cạnh BC, C'B'. Tính khoảng cách giữa hai đường thẳng A'B và B'C'.
Giải
Cách 1:
Vì các các mặt bên của lăng trụ đều là hình vuông nên
A’
C’
B’
A
B
C
D
x
a
z
y
Þ các tam giác ABC, A’B’C’ là các tam giác đều.
Chọn hệ trục Axyz, với Ax, Ay, Az đôi một vuông góc, A(0;0;0),
Ta có:
, với
Phương trình mặt phẳng (A’BC) qua A’ với vectơ pháp tuyến :
Vậy,
Cách 2:
A’
B’
C’
C
B
A
F
D
H
Vì các các mặt bên của lăng trụ đều là hình vuông nên
Þ các tam giác ABC, A’B’C’ là các tam giác đều.
Ta có: .
.
Ta có:
Dựng

DA’FD vuông có:
Vậy,
x
y
z
A
B
C
D
3. Tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau, AB = 3, AC=AD=4. Tính khoảng cách từ A tới mặt phẳng (BCD)
Lời giải
+ Chọn hệ trục tọa độ Oxyz sao cho A º O.
D ÎOx; C Î Oy và B Î Oz
Þ A(0;0;0); B(0;0;3); C(0;4;0); D(4;0;0)
Þ Phương trình mặt phẳng (BCD) là:
Û 3x + 3y + 4z - 12 = 0.
Suy ra khoảngr cách từ A tới mặt phẳng (BCD).
II. Lyuyện tập
Bài 1: Cho hình chóp SABC có độ dài các cạnh đề bằng 1, O là trọng tâm của tam giác DABC. I là trung điểm của SO.
Mặt phẳng (BIC) cắt SA tại M. Tìm tỉ lệ thể tích của tứ diện SBCM và tứ diện SABC.
H là chân đường vuông góc hạ từ I xuống cạnh SB. Chứng minh rằng IH qua trọng tâm G của DSAC.
Lời giải
x
1. Chọn hệ trục tọa độ Oxyz sao cho O là gốc tọa độ. AÎOx, SÎOz, BC//Oy
Þ;;;;
z
x
y
I
O
H
A
C
S
G
N
Ta có: ;;
Þ Phương trình mặt phẳng (IBC) là:
Hay: mà ta lại có: .
Phương trình đường thẳng SA: .
+ Tọa độ điểm M là nghiệm của hệ: .
Thay (1), (2), (3) và (4):
M
z
x
y
I
O
B
A
C
S
;
Þ M nằm trên đoạn SA và .
2. Do G là trọng tâm của tam giác DASC
Þ SG đi qua trung điểm N của AC
Þ GI Ì (SNB) Þ GI và SB đồng phẳng (1)
Ta lại có
Từ (1) và (2) .
Bài 2: Cho hình chóp O.ABC có OA = a, OB = b, OC = c đôi một vuông góc. Điểm M cố định thuộc tam giác ABC có khoảng cách lần lượt đến các mặt phẳng (OBC), (OCA), (OAB) là 1, 2, 3. Tính a, b, c để thể tích O.ABC nhỏ nhất.
Hướng dẫn giải
c
z
b
y
a
x
3
H
O
C
B
A
M
Chọn hệ trục tọa độ như hình vẽ, ta có:
O(0; 0; 0), A(a; 0; 0), B(0; b; 0), C(0; 0; c).
d(M, (OAB)) = 3 Þ zM = 3.
Tương tự Þ M(1; 2; 3).
Þ (ABC):
(1). (2).
.
(2).
Bài 3: Cho tứ diện ABCD có AD vuông góc với mặt phẳng (ABC) và tam giác ABC vuông tại A, AD=a, AC=b, B=c. Tính diện tích của tam giác BCD theo a, b, c và chứng minh rằng .
x
y
z
A
B
C
D
Giải
Chọn hệ trục tọa độ như hình vẽ, ta có: A(0;0;0), B(c;0;0), C(0;b;0), D(0;0;a).
Theo bất đ
 

Các chủ đề có liên quan khác

Top