Brainerd

New Member

Download miễn phí Đề tài Dàn lọc và mã hóa băng con





Mã hoá băng con rất thuận tiện cho việc nén tín hiệu tiếng nói bởi vì đối với tín hiệu tiếng nói thông thường năng lượng của phổ tín hiệu phân bố không đều, năng lượng phổ tiếng nói chủ yếu tập trung ở miền tần số thấp, còn miền tần số cao năng lượng của phổ tiếng nói rất nhỏ.
Còn đối với tín hiệu hình ảnh, mã hoá băng con cũng rất hiệu quả cho việc nén tín hiệu hình ảnh bởi vì phổ năng lượng của tín hiệu hình ảnh cũng phân bố không đều nhau vì vậy mỗi dải phổ sẽ có năng lượng khác nhau, dải nào có năng lượng lớn sẽ được mã hoá với số bit lớn còn dải nào có năng lượng nhỏ sẽ được mã hoá với số bit ít hơn.
Nói chung các tín hiệu trong thực tế có phân bố năng lượng là không đều nhau, vì vậy mã hoá băng con là rất thuận lợi cho việc nén tín hiệu.
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

dàn lỌC VÀ MÃ HÓA BĂNG CON
2.1. Mở đầu
Kỹ thuật lọc số nhiều nhịp được ứng dụng trong xử lý tín hiệu, dùng để tăng tốc độ tính toán trong các bộ lọc bằng cách giảm số phép nhân thực hiện trong một giây.
Thông thường, trong quá trình xử lý số tín hiệu, bề rộng của dải tần số có thể thay đổi. Các bộ lọc sẽ triệt tiêu các thành phần tần số không mong muốn, bề rộng dải tần của tín hiệu xử lý sẽ giảm đi và chúng ta có thể giảm tần số lấy mẫu cho phù hợp với bề rộng phổ của tín hiệu và như vậy ta sẽ giảm số các phép tính toán trong bộ lọc số.
Thành tựu của kỹ thuật lọc số nhiều nhịp thể hiện ở các hệ thống số nhiều nhịp như là tổng hợp các bộ lọc phân chia và các bộ lọc nội suy, các dàn lọc phân tích và tổng hợp, và ứng dụng của chúng là mã hoá băng con.
2.2. Thay đổi nhịp tần số
2.2.1. Định nghĩa hệ thống nhiều nhịp
Nếu trong một hệ thống xử lý số tín hiệu, tần số (hay nhịp) lấy mẫu được thay đổi trong quá trình xử lý, thì hệ thống số này được gọi là hệ thống nhiều nhịp.
2.2.2. Định nghĩa phép phân chia
Việc giảm tần số (hay nhịp) lấy mẫu từ giá trị Fs về một giá trị F’s (F’s < Fs) được định nghĩa là phép phân chia.
Nếu F’s = Fs/M (M > 1 và nguyên dương) thì ta gọi là phép phân chia theo hệ số M; M gọi là hệ số phân chia.
2.2.3. Bộ phân chia
Hệ thống chỉ làm nhiệm vụ giảm tần số lấy mẫu được gọi là bộ phân chia
Tín hiệu ngõ ra có biên độ ở những thời điểm có chu kỳ T’s.=1/F’s.
Hình 2.1: Bộ phân chia
Trong miền biến số độc lập n, ta có :
y¯M(n) = x (nM) (2.1)
Trong miền z, ta có :
(2.2)
Trong miền tần số, ta có :
(2.3)
Phép phân chia làm x(n) co hẹp trong miền thời gian (nếu n là thời gian) thì sẽ dẫn đến hiện tượng giãn rộng trong miền tần số.
2.2.4. Định nghĩa phép nội suy
Việc tăng tần số (hay nhịp) lấy mẫu từ giá trị Fs về một giá trị F’s (F’s>Fs) được định nghĩa là phép nội suy.
Nếu F’s = LFs (L > 1 và nguyên dương) thì ta gọi là phép nội suy theo hệ số L; L gọi là hệ số nội suy.
2.2.5. Bộ nội suy
Hệ thống chỉ làm nhiệm vụ tăng tần số lấy mẫu được gọi là bộ nội suy
Tín hiệu ngõ ra có biên độ của tín hiệu ngõ vào, ngoài ra, nó còn chèn L-1 mẫu có giá trị bằng 0 giữa hai mẫu từ tín hiệu ngõ vào.
Hình 2.2: Bộ nội suy
Trong miền biến số độc lập n, ta có
với n còn lại
y­L[n]= với n = 0, ±L, ±2L,... (2.4)
Trong miền z, ta có :
Y(z) = X(zL) (2.5)
Trong miền tần số, ta có :
Y(ejw)=X(ejwL) (2.6)
Phép nội suy làm tín hiệu x(n) giãn rộng trong miền thời gian (nếu n là thời gian) thì sẽ dẫn đến hiện tượng co hẹp trong miền tần số.
Phép nội suy chèn thêm (L-1) mẫu có giá trị bằng 0 giữa hai mẫu x(n) từ tín hiệu ngõ vào thì trong miền tần số sẽ tạo ra (L-1) bản sao chụp phụ phổ cơ bản, tức là (L-1) bản sao chụp này sẽ chèn vào giữa 2 phổ cơ bản.
2.3. Bộ lọc biến đổi nhịp lấy mẫu
2.3.1. Bộ lọc phân chia
Tín hiệu x(n) khi đi qua bộ phân chia ¯M, trong miền tần số sẽ tạo ra (M-1) thành phần hư danh (aliasing), các thành phần hư danh này sẽ gây hiện tượng chồng phổ.
Nhưng nếu x(n) có băng tần nằm trong, tức là tần số giới hạn dải chắn thì sẽ không gây hiện tượng chồng phổ. Để làm được điều này, ta đặt trước bộ phân chia¯M một bộ lọc thông thấp có để loại bỏ các thành phần tần số , chỉ giữ lại thành phần và sẽ tránh hiện tượng chồng phổ.
y[n]
M
x[n]
h(n)
bộ lọc thông thấp
h(n): đáp ứng xung của bộ lọc
Hình 2.3: Bộ lọc phân chia
Trong miền biến số độc lập n:
yH¯M(n) =¯M[x(n)*h(n)]= (2.7)
Trong miền z:
(2.8)
Trong miền tần số:
(2.9)
2.3.2. Bộ lọc nội suy
Phép nội suy chèn thêm (L-1) mẫu có giá trị bằng 0 giữa hai mẫu của tín hiệu vào x(n) trong miền biến số n và tương ứng trong miền tần số sẽ tạo ra (L-1) ảnh phụ của phổ cơ bản sau khi đã co hẹp lại L lần để nhường chỗ cho (L-1) ảnh phụ mà không gây hiện tượng chồng phổ. Như vậy, phép nội suy ­L không làm hư thông tin. Nhưng để nội suy ra các mẫu có biên độ 0, ta phải đặt sau bộ nội suy một bộ lọc có .
Trong miền biến số n, bộ lọc này làm nhiệm vụ nội suy các mẫu biên độ 0. Còn trong miền tần số, nó làm nhiệm vụ loại bỏ các ảnh phụ của phổ cơ bản.
x[n]
y[n]
y­L(n)
y­LH(n)
L
h(n)
bộ lọc thông thấp có
h(n): đáp ứng xung của bộ lọc
Hình 2.4: Bộ lọc nội suy
Trong miền biến số độc lập n:
y­LH(n) = với k=0, ±L, ±2L,... (2.10)
Trong miền z:
(2.11)
Trong miền tần số:
y­LH(e =X(e.H(ejw) (2.12)
2.4. Dàn lọc số
Dàn lọc số là một tập hợp các bộ lọc số hay có lối vào chung hay có lối ra tổng. Dàn lọc có chung lối vào và nhiều lối ra thì được gọi là dàn lọc phân tích, còn dàn lọc có nhiều lối vào và chung lối ra thì được gọi là dàn lọc tổng hợp.
2.4.1. Dàn lọc số phân tích
Dàn lọc số phân tích là tập hợp các bộ lọc số có đáp ứng tần số là Hk(ejw) được nối với nhau theo kiểu một đầu vào và nhiều đầu ra, cấu trúc của dàn lọc phân tích được minh họa như sau:
Ta thấy rằng tín hiệu x[n] đưa vào đầu vào và được phân tích thành M tín hiệu ở đầu ra là xk[n] (0 £k £ M-1), như vậy trong miền tần số mỗi tín hiệu xk[n] sẽ chiếm một dải tần số con trong dải tần của x[n] nên M tín hiệu xk[n] được gọi là tín hiệu dải con (Subband).
H0(ejw)
H1(ejw)
xo[n],
x1[n],
HM-1(ejw)
xM-1[n],
x[n]
Hình 2.5: Dàn lọc số phân tích
X(ejw)
X0(ejw)
X1(ejw)
XM-1(ejw)
Còn các bộ lọc số, H0(ejw) sẽ là bộ lọc số thông thấp, H1(ejw) đến HM-2(ejw) sẽ là các bộ lọc thông dải, còn HM-1(ejw) sẽ là bộ lọc thông cao, mà các tần số cắt của các bộ lọc số này sẽ kế tiếp nhau. Như vậy các bộ lọc H0(ejw) , H1(ejw) , ...,HM-1(ejw) được gọi là các bộ lọc phân tích, còn tập hợp các bộ lọc hay {H0(ejw), H1(ejw) , . . .,HM-1(ejw)} được gọi là dàn lọc phân tích.
2.4.2. Dàn lọc số tổng hợp
Dàn lọc số tổng hợp là tổng hợp các bộ lọc số có đáp ứng tần số là Gk(ejw) được nối với nhau theo kiểu nhiều đầu vào và một đầu ra, cấu trúc của dàn lọc số tổng hợp được thể hiện trên sau :
G0(ejw)
G1(ejw)
xo[n]
x1[n]
GM-1(ejw)
xM-1[n]
+
+
y[n]
G1(ejw)
Hình 2.6: Dàn lọc số tổng hợp
2.4.3. Dàn lọc số nhiều nhịp hai kênh và dàn lọc gương cầu phương QMF (Quadrature Mirror Filter Bank)
Dàn lọc số nhiều nhịp là sự kết hợp của dàn lọc số phân tích, dàn lọc số tổng hợp với bộ phân chia và bộ nội suy.
Với số bộ lọc của băng lọc phân tích và tổng hợp bằng 2 thì ta có dàn lọc số nhiều nhịp hai kênh.
Hình 2.7: Băng lọc nhiều nhịp gương cầu phương
Trong dàn lọc số phân tích như hình trên, H0(ejω)là bộ lọc số thông thấp, H1(ejω) là bộ lọc số thông cao. Khi thiết kế các bộ lọc này sẽ không thể đạt được lý tưởng, tất nhiên đối với cả các bộ lọc số G0(ejω), G1(ejω) ở dàn lọc tổng hợp nên tín hiệu ra x^(n) của dàn lọc số nhiều nhịp này sẽ khác với tín hiệu vào x(n).
Nếu |H0(ejω)|=|H1(ejω)| và nếu chọn tần số cắt cho thì 2 bộ lọc là π/2 thì ta thấy |H0(ejω)|là ảnh của |H1(ejω)| qua gương đặt ở vị trí π/2, và theo thang tần số góc chuẩn hóa bởi tần số lấy mẫu Fs thì π/2 chính là một phần tư tần số lấy mẫu. Băng l
 
Top