jinjaujan

New Member

Download miễn phí Giáo trình Cơ sở tự động học - Tính ổn định của hệ thống





Tiêu chuẩn ổn định Hurwitz là phương pháp khác đểxác định tất cảnghiệm của
phương trình đặc trưng có phần thực âm hay không . Tiêu chuẩn này được áp dụng thông qua
việc sửdụng các định thức tạo bởi những hệsốcủa phương trình đặc trưng.
Giảsửhệsốthứnhất, andương. Các định thức Aivới i = 1, 2, . , n-1 được tạo ra
nhưlà các định thức con (minor determinant) của định thức :



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

Cơ Sở Tự Động Học Phạm Văn Tấn
Chương VI Tính Ổn Định Của Hệ Thống Trang VI.1
Chương VI: TÍNH ỔN ĐỊNH CỦA HỆ
THỐNG
• ĐẠI CƯƠNG.
• ĐỊNH NGHĨA TÍNH ỔN ĐỊNH.
• KHAI TRIỂN PHÂN BỐ TỪNG PHẦN.
• MẶC PHẲNG PHỨC VÀ SỰ ỔN ĐỊNH CỦA HỆ THỐNG.
• CÁC PHƯƠNG PHÁP XÁC ĐỊNH TÍNH ỔN ĐỊNH CỦA HỆ
THỐNG.
• TIÊU CHUẨN ỔN ĐỊNH ROUTH.
• TIÊU CHUẨN HURWITZ.
Cơ Sở Tự Động Học Phạm Văn Tấn
Chương VI Tính Ổn Định Của Hệ Thống Trang VI.2
I. ĐẠI CƯƠNG.
Có nhiều đặc tính được dùng trong thiết kế hệ thống tự kiểm. Nhưng yêu cầu
quan trọng nhất, đó là hệ thống có ổn định theo thời gian hay không?
Nói chung, tính ổn định được dùng để phân biệt hai loại hệ thống: Hữu dụng và vô
dụng. Trên quan điểm thực tế, ta xem một hệ thống ổn định thì hữu dụng, trong khi một
hệ thống bất ổn thì vô dụng.
Đối với nhiều hệ thống khác nhau: tuyến tính, phi tuyến, không đổi theo thời gian
và thay đổi theo thời gian, tính ổn định có thể được định nghĩa theo nhiều hình thức
khác nhau. Trong chương này, ta sẽ chỉ xét tính ổn định của những hệ tuyến tính, không
đổi theo thời gian.
Một cách trực giác, tính ổn định của một hệ là khả năng quay trở về trạng thái
ban đầu sau khi đã lệch khỏi trạng thái này, khi tác động của các nguồn kích thích từ
bên ngoài(hay các nhiểu) chấm dứt.
II. ĐỊNH NGHĨA TÍNH ỔN ĐỊNH
Một hệ thống là ổn định nếu đáp ứng xung lực giảm tới zero khi thời gian tiến tới vô
cực.
* Thí dụ 6.1: cho đáp ứng xung lực của vài hệ điều khiển sau đây. Trong mỗi trướng hợp,
hãy xác định tính ổn định của hệ thống.
a) g(t) = e-t.
b) g(t) = t.e-t.
c) g(t) = 1.
d) g(t) = e-t.sin3t.
e) g(t) = sinωt.
g(t)
1.0
0.5
0
1 2 3 4 t
e-t
a)
g(t)
1.0
0.5
0
1 2 3 4 t
te-t
b)
Cơ Sở Tự Động Học Phạm Văn Tấn
Chương VI Tính Ổn Định Của Hệ Thống Trang VI.3
g(t)
1.0
0.5
0
1 2 3 4 t
c)
g(t)
1.0
0
2 4 t
sinωt
e)
-1.0
g(t)
1.0 e-tsinωt
0
π π/3
-1.0
d)
t 2π/3
Hình .6_1.
Theo định nghĩa, hệ thống:
a) ổn định.
b) ổn định.
c) bất ổn.
d) ổn định.
e) bất ổn.
Cơ Sở Tự Động Học Phạm Văn Tấn
Chương VI Tính Ổn Định Của Hệ Thống Trang VI.4
III. KHAI TRIỂN PHÂN BỐ TỪNG PHẦN (Parial
Fraction expansion)
Có thể tìm đáp ứng xung lực của một hệ thống bằng cách lấy biến đổi laplace ngược
hàm chuyễn của hệ.
Và để không phải dùng đến tích phân biến đổi laplace ngược.

∞+
∞−π
=
jc
jc
st dtesF
j2
1tf )()(
ta có thể dùng phương pháp khai triển phân số từng phần
Xem hàm chuyển G(s) = C(s)/ R(s). (6.1)
Trong đó, C(s) và R(s) là những đa thức theo s. Giả sữ R(s) có bậc lớn hơn C(s). Đa
thức R(s) gọi là đa thức đặc trưng và có thể viết:
R(s) = sn + a1sn-1 +....+an-1s +an. (6.2)
Trong đó, a1,...an là những hệ số thực.
Những nghiệm của phương trình đặc trưng R(s) = 0 có thể là thực, hay những cặp phức
liên hợp đơn hay đa cấp (có lũy thừa hay không).
Ta xem trường hợp những nghiệm này thực và đơn cấp, phương trình (6.1) có thể được
viết:
)ss)...(ss)(ss(
)s(C
)s(R
)s(C)s(G
n21 +++
== (6.3)
Trong đó, -s1, -s2,....-sn là những nghiệm của phương trình đặc trưng zero của R(s) hay
là những cực của G(s).
n21 ss
ks
ss
ks
ss
kssG n21 ++++++= ....)( (6.4)
Những hệ số Ksi (i=1, 2, 3,...n) được xác định bằng cách nhóm 2 vế của (6.3) hay (6.4)
cho (s+si) rồi đặt s = -si.
Thí dụ, để tìm hệ số Ks1, ta nhóm cả hai vế (6.3) cho (s+s1) và đặt s = -s1.
)ss)....(ss)(ss(
)s(C
)s(R
)s(C)ss(K
1n1312
1
1SS
11S −−−
−=⎥⎦
⎤⎢⎣
⎡ +=
−=
(6.5)
* thí dụ 6.2: xem hàm chuyển của một hệ thống.
)3s)(2s)(1s(
3s5)s(G +++
+= (6.6).
Hãy tìm đáp ứng xung lực của hệ.
Cơ Sở Tự Động Học Phạm Văn Tấn
Chương VI Tính Ổn Định Của Hệ Thống Trang VI.5
Trước hết, ta áp dụng kỹ thuật khai triển phân số từng phần.
3s
K
2s
K
1s
K)s(G 321 +++++=
−−− (6.7)
các hệ số K-1, K-2, K-3 được xác định như sau:
[ ] 1
)31)(21(
3)1(5)s(G)1s(K 1S1 −=+−+−
+−=+= −=−
[ ] 7
)32)(12(
3)2(5)s(G)2s(K 2S2 =+−+−
+−=+= −=−
[ ] 6
)23)(13(
3)3(5)s(G)3s(K 3S3 −=+−+−
+−=+= −=−
Vậy (6.7) trở thành:
3s
6
2s
7
1s
1)s(G +
−++++
−= (6.8).
Bây giờ ta có thể dùng bảng biến đổi để tính đáp ứng xung lực của hệ thống.
g(t) =L-1[G(s)].
g(t) = -L-1 ⎥⎦
⎤⎢⎣

+1
1
s +7L
-1 ⎥⎦
⎤⎢⎣

+ 2
1
s -6L
-1 ⎥⎦
⎤⎢⎣

+ 3
1
s (6.9)
g(t) = -e-t + 7e-2t -6e-3t. (6.10)
* Thí dụ 6.3: bài toán tương tự như trên, với hàm chuyển như sau:
)4)(2)(1(
199)(
2
+++
++=
sss
sssG (6.11)
)4(6
1
)2(2
5
)1(3
11)( +−+−+= ssssG (6.12)
g(t) =
3
11 e-t -
2
5 e-2t -
6
1 e-4t. (6.13)
* Thí dụ 6.4:
)2()1(
1)( 2 ++= sssG
Khai triển phân số từng phần:
Cơ Sở Tự Động Học Phạm Văn Tấn
Chương VI Tính Ổn Định Của Hệ Thống Trang VI.6
2)1(1
)( 212
1211
+++++= s
K
s
K
s
KsG
[ ] 1
2
1)()1(
1
1
2
11 −=⎥⎦
⎤⎢⎣

+=+= −=−= SS sds
dsGs
ds
dK
[ ] 1)()1( 1212 =+= −=SsGsK
[ ] 1)()2( 221 =+= −=SsGsK
2
1
)1(
1
1
1)( 2 +++++−=⇒ ssssG
Biến đổi Laplace ngược : g(t) = - e-t + t e-t + e-2t.
IV. MẶT PHẴNG PHỨC VÀ SỰ ỔN ĐỊNH CỦA HỆ
THỐNG
1. Hàm chuyễn là một hàm hữu tỷ, bao gồm tỷ số của những đa thức theo biến số
phức s.
( )
( )∏



=

=
=
+
+
== n
1i
i
m
1i
i
n
0i
i
i
m
0i
i
m
i
m
ps
zsm
sa
s
b
bb
)s(G (6.14)
Trong đó các (s+zi ) là những thừa số của đa thức tử và ( s+pi ) là những thừa số của
đa thức mẫu.
a) Những giá trị của s làm cho trị tuyệt đối của |G(s)| bằng zero thì gọi là các zero của
G(s).
b) Những giá trị của s làm cho trị tuyệt đối của |G(s)| tiến tới vô cực thì gọi là các cực
(pole) của G(s).
* Thí dụ 6.5 : Xem một hệ thống có hàm chuyễn
685
422)( 23
2
+++
−−=
sss
sssG
Có thể viết lại:
)1)(1)(3(
)2)(1(2)(
jsjss
sssG −++++
−+= (6.16)
G(s) có các zero tại s = -1 và s = 2
G(s) có các cực tại s = -3 ; s = -1-j và s = -1+j
Cực và zero là những số phức, được xác định bởi hai biến số s = + j. Một để biểu diễn
phần thực và một để biểu diễn phần ảo cho số phức.
Cơ Sở Tự Động Học Phạm Văn Tấn
Chương VI Tính Ổn Định Của Hệ Thống Trang VI.7
Một cực hay một zero có thể được biểu diễn trong tọa độ vuông góc. Trục hoành chỉ
trục thực và trục tung chỉ trục ảo. Mặt phẳng xác địnhbởi hệ trục này gọi là mặt phẳng phức
hay mặt phẳng s.
-3 -2 -1 0 1 2
3
j
-
j

σ
H.6-2
Nữa mặt phẵng mà trong đó σ < 0 gọi là nữa trái của mặt phẵng s. và nữa kia trong đó σ
> 0 gọi là nữa phải của mặt phẵng s.
Vị trí của một cực trong mặt phẳng s được kí hiệu bằng dấu (X) và vị trí một zero bằng
dấu (o).
2. Ở trên ta thấy đáp ứng xung lực của một hệ thống tuyến tính không thay đổi theo thới gian
thì gồm tổng các hàm expo theo thời gian, mà các số mũ của chúng là nghiệm của phương
trình đặc trưng.
Vậy để đảm bảo hàm xung lực giãm theo hàm expo theo thời gian thì các nghiệm của
phương trình đặc trưng phải có phần thực âm.
Nghiệm của phương trình đặc trưng của hệ thống cũng là cực của hàm chuyễn.
Vậy có thể kết luận rằng, điều kiện cần để một hệ ổn định là các cực của hàm chuyển
phải nằm ở nữa trái của m...
 
Top