Download miễn phí Giáo trình Kỹ thuật số





Đểthực hiện một hàm logic bằng mạch điện tử, người ta luôn luôn nghĩ đến việc sử
dụng lượng linh kiện ít nhất. Muốn vậy, hàm logic phải ởdạng tối giản, nên vấn đềrút gọn
hàm logic là bước đầu tiên phải thực hiệntrong quá trình thiết kế. Có 3 phương pháp rút
gọn hàm logic:
- Phương pháp đại số
- Phương pháp dùng bảng Karnaugh
- Phương pháp Quine Mc. Cluskey



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

hợp của những tổng và tích logic.
♦ Nếu biểu thức là tổng của những tích, ta có dạng tổng
Thí dụ : ZYXZXYZ)Y,f(X, ++=
♦ Nếu biểu thức là tích của những tổng, ta có dạng tích
Thí dụ : )ZZ).(YY).(X(XZ)Y,f(X, +++=
Một hàm logic được gọi là hàm chuẩn nếu mỗi số hạng chứa đầy đủ các biến, ở dạng
nguyên hay dạng đảo của chúng.
Thí dụ : ZXYZYXXYZZ)Y,f(X, ++= là một tổng chuẩn.
Mỗi số hạng của tổng chuẩn được gọi là minterm.
Z)YXZ).(YZ).(XY(XZ)Y,f(X, ++++++= là một tích chuẩn.
Mỗi số hạng của tích chuẩn được gọi là maxterm.
Phần sau đây cho phép chúng ta viết ra một hàm dưới dạng tổng chuẩn hay tích chuẩn
khi có bảng sự thật diễn tả hàm đó.
2.2.1. Dạng tổng chuẩn
Để có được hàm logic dưới dạng chuẩn, ta áp dụng các định lý triển khai của Shanon.
Dạng tổng chuẩn có được từ triển khai theo định lý Shanon thứ nhất:
Tất cả các hàm logic có thể triển khai theo một trong những biến dưới dạng tổng
của hai tích như sau:
f(A,B,...,Z) = A.f(1,B,...,Z) + A .f(0,B,...,Z) (1)
Hệ thức (1) có thể được chứng minh rất dễ dàng bằng cách lần lượt cho A bằng 2 giá
trị 0 và 1, ta có kết quả là 2 vế của (1) luôn luôn bằng nhau. Thật vậy
Cho A=0: f(0,B,...,Z) = 0.f(1,B,...,Z) + 1. f(0,B,...,Z) = f(0,B,...,Z)
Cho A=1: f(1,B,...,Z) = 1.f(1,B,...,Z) + 0. f(0,B,...,Z) = f(1,B,...,Z)
Với 2 biến, hàm f(A,B) có thể triển khai theo biến A :
KỸ THUẬT SỐ
______________________________________________________Chương 2
Hàm Logic II - 7
___________________________________________________________________________
_________________________________________________________Nguyễn Trung Lập
f(A,B) = A.f(1,B) + A .f(0,B)
Mỗi hàm trong hai hàm vừa tìm được lại có thể triển khai theo biến B
f(1,B) = B.f(1,1) + Β.f(1,0) & f(0,B) = B.f(0,1) + B .f(0,0)
Vậy: f(A,B) = AB.f(1,1) + A .B.f(0,1) + A B .f(1,0) + A B .f(0,0)
f(i,j) là giá trị riêng của f(A,B) khi A=i và B=j trong bảng sự thật của hàm.
Với 3 biến, trị riêng của f(A, B, C) là f(i, j, k) khi A=i, B=j và C=k ta được:
f(A,B,C) = A.B.C.f(1,1,1) + A.B. C .f (1,1,0) + A. B .C.f(1,0,1) + A. B . C .f(1,0,0) +
A .B.C.f(0,1,1) + A .B. C .f(0,1,0) + A . B .C.f(0,0,1) + A . B . C .f(0,0,0)
Khi triển khai hàm 2 biến ta được tổng của 22 = 4 số hạng
Khi triển khai hàm 3 biến ta được tổng của 23 = 8 số hạng
Khi triển khai hàm n biến ta được tổng của 2n số hạng
Mỗi số hạng là tích của một tổ hợp biến và một trị riêng của hàm. Hai trường hợp có
thể xảy ra:
- Giá trị riêng = 1, số hạng thu gọn lại chỉ còn các biến:
A . B .C.f(0,0,1) = A . B .C nếu f(0,0,1) = 1
- Giá trị riêng = 0, tích bằng 0 :
A . B . C .f(0,0,0)= 0 nếu f(0,0,0) = 0
và số hạng này biến mất trong biểu thức của tổng chuẩn.
Thí dụ:
Cho hàm 3 biến A,B,C xác định bởi bảng sự thật:
Hàng A B C Z=f(A,B,C)
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
1
1
0
1
0
1
Với hàm Z cho như trên ta có các trị riêng f(i, j, k) xác định bởi:
f(0,0,1) = f(0,1,0) = f(0,1,1) = f(1,0,1) = f(1,1,1) =1
f(0,0,0) = f(1,0,0) = f(1,1,0) = 0
- Hàm Z có trị riêng f(0,0,1)=1 tương ứng với các giá trị của tổ hợp biến ở hàng (1) là
A=0, B=0 và C=1 đồng thời, vậy A. B .C là một số hạng trong tổng chuẩn
- Tương tự với các tổ hợp biến tương ứng với các hàng (2), (3), (5) và (7) cũng là các số
hạng của tổng chuẩn, đó là các tổ hợp: A.B. C , A .B.C, A. B .C và A.B.C
- Với các hàng còn lại (hàng 0,4,6), trị riêng của f(A,B,C) = 0 nên không xuất hiện trong
triển khai.
KỸ THUẬT SỐ
______________________________________________________Chương 2
Hàm Logic II - 8
___________________________________________________________________________
_________________________________________________________Nguyễn Trung Lập
Tóm lại ta có: Z = A. B .C + A.B. C + A .B.C + A. B .C + A.Β.C
- Ý nghĩa của định lý Shanon thứ nhất:
Nhắc lại tính chất của các hàm AND và OR: b1.b2.... bn = 1 khi b1, b2..., bn đồng thời
bằng 1 và để a1 + a2 + ... + ap = 1 chỉ cần ít nhất một biến a1, a2, ..., ap bằng 1
Trở lại thí dụ trên, biểu thức logic tương ứng với hàng 1 (A=0, B=0, C=1) được
viết A. B .C =1 vì A = 1 , B = 1, C = 1 đồng thời.
Biểu thức logic tương ứng với hàng 2 là A.B. C =1 vì A=0 ( A = 1), B=1, C=0 ( C = 1)
đồng thời
Tương tự, với các hàng 3, 5 và 7 ta có các kết quả: A .B.C , A. B .C và A.Β.C
Như vậy, trong thí dụ trên
Z = hàng 1 + hàng 2 + hàng 3 + hàng 5 + hàng 7
Z = A. B .C + A.B. C + A .B.C + A. B .C + A.Β.C
Tóm lại, từ một hàm cho dưới dạng bảng sự thật, ta có thể viết ngay biểu thức của hàm
dưới dạng tổng chuẩn như sau:
- Số số hạng của biểu thức bằng số giá trị 1 của hàm thể hiện trên bảng sự thật
- Mỗi số hạng trong tổng chuẩn là tích của tất cả các biến tương ứng với tổ hợp mà
hàm có trị riêng bằng 1, biến được giữ nguyên khi có giá trị 1 và được đảo nếu giá trị
của nó = 0.
2.2.2. Dạng tích chuẩn
Đây là dạng của hàm logic có được từ triển khai theo định lý Shanon thứ hai:
Tất cả các hàm logic có thể triển khai theo một trong những biến dưới dạng tích
của hai tổng như sau:
f(A,B,...,Z) = [ A + f(1,B,...,Z)].[A + f(0,B,...,Z)] (2)
Cách chứng minh định lý Shanon thứ hai cũng giống như đã chứng minh định lý
Shanon thứ nhất.
Với hai biến, hàm f(A,B) có thể triển khai theo biến A
f(A,B) = [ A + f(1,B)].[A + f(0,B)]
Mỗi hàm trong hai hàm vừa tìm được lại có thể triển khai theo biến B
f(1,B) = [ B + f(1,1)].[B + f(1,0)] & f(0,B) = [ B + f(0,1)].[B + f(0,0)]
f(A,B) = ⎨ A + [ B + f(1,1)].[B + f(1,0)]⎬.⎨A + [ B + f(0,1)].[B + f(0,0)]⎬
Vậy: f(A,B) = [ A+ B + f(1,1)].[ A+B + f(1,0)].[A+ B + f(0,1)].[A+B + f(0,0)]
Cũng như dạng chuẩn thứ nhất, f(i,j) là giá trị riêng của f(A,B) khi A=i và B=j trong
bảng sự thật của hàm.
Với hàm 3 biến:
f(A,B,C)=[ A+ B + C +f(1,1,1)].[ A+ B +C+f(1,1,0)].[ A+B+ C +f(1,0,1)].[ A+B+C+f(1,0,0)].
[A+ B + C +f(0,1,1)].[A+ B +C+ f(0,1,0)].[A+B+ C +f(0,0,1)].[A+B+C+f(0,0,0)]
Số số hạng trong triển khai n biến là 2n. Mỗi số hạng là tổng (OR) của các biến và trị
riêng của hàm.
- Nếu trị riêng bằng 0 số hạng được rút gọn lại chỉ còn các biến (0 là trị trung tính của
phép cộng logic)
A + B + C + f(0,0,0) = A + B + C nếu f(0,0,0) = 0
- Nếu trị riêng bằng 1, số hạng triển khai = 1
A + B + C + f(0,0,1) = 1 nếu f(0,0,1) = 1
KỸ THUẬT SỐ
______________________________________________________Chương 2
Hàm Logic II - 9
___________________________________________________________________________
_________________________________________________________Nguyễn Trung Lập
và biến mất trong biểu thức của tích chuẩn.
Lấy lại thí dụ trên:
Hàng A B C Z=f(A,B,C)
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
1
1
0
1
0
1
Các trị riêng của hàm đã nêu ở trên.
- Hàm Z có giá trị riêng f(0,0,0) = 0 tương ứng với các giá trị của biến ở hàng 0 là
A=B=C=0 đồng thời, vậy A+B+C là một số hạng trong tích chuẩn.
- Tương tự với các hàng (4) và (6) ta được các tổ hợp A+B+C và A+ B +C.
- Với các hàng còn lại (hàng 1, 2, 3, 5, 7), trị riêng của f(A,B,C) = 1 nên không xuất
hiện trong triển khai.
Tóm lại, ta có: Z = (A + B + C).( A+ B + C).( A+ B +C )
- Ý nghĩa của định lý thứ hai:
Nhắc lại tính chất của các hàm AND và OR: Để b1.b2.... bn =0 chỉ cần ít nhất một biến
trong b1, b2,..., bn =0...
 
Top