gian_ho

New Member

Download miễn phí Lý thuyết Thiết bị trao đổi nhiệt





Phương trình cân bằng nhiệt tổng quát liên hệcác hệsốentanpi ra vào thiết bịvới
nhiệt truyền qua vỏthiết bịra môi trường và biến thiên nội năng của thiết bị:
(Hiệu entanpi ra – vào của chất lỏng 1) + (Hiệu entanpi ra- vào của chất lỏng 2) +
(Nhiệt truyền qua vỏthiết bịra môi trường) + (Biến thiên nội năng của thiết bị) = 0.



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

ị làm lạnh, thường t < tf nên Qk < 0 tức môi trường
toả nhiệt vào thiết bị.
τ là thời gian từ khi khởi động thiết bị ở nhiệt độ t0 đến nhiệt độ τt nào đó.
∆U = ∑ViρiCi( τt - t0), [J] là biến thiên nội năng của các chi tiết tạo ra thiết bị. Trong
thiết bị gia nhiệt, thường τt > t0 nên ∆U > 0; trong thiết bị làm lạnh, thường τt < t0 nên ∆U
< 0. Nếu tính từ khi thiết bị đã làm việc ổn định, thì ∆U = 0.
Nếu đặt W = GCp, [W/K] là đương lượng nước của chất lỏng thì liên hệ giữa W, lưu
lượng G(kg/s); khối lượng riêng ρ[kg/m3], nhiệt dung riêng Cp[J/kgK], vận tốc ω[m/s] của
chất lỏng với tiết diện dòng chất lỏng f sẽ có dạng:
W = GCp = ρωfCp
Trong đó: V = ωf [m3/s] được gọi là lưu lượng thể tích.
Phương trình CBN tích phân tổng quát, liên hệ các thông số như trên sẽ có dạng:
[ρ1ω1f1( /1//1 ii − ) + ρ2ω2f2( /2//2 ii − ) + ∑kiFi( t - tf)]τ + ∑ρiViCi( τt - t0).
Phương trình này cho phép tìm được một đại lượng chưa biết nào đó, ví dụ thời gian
τ để khởi động thiết bị khi có thể xác định tất cả các đại lượng còn lại.
Khi xét cân bằng nhiệt qua 1 vi phân dF của diện tích trao đổi nhiệt của thiết bị thì
phương trình cân bằng nhiệt tổng quát có dạng vi phân sau:
ρ1ω1f1di1 + ρ2ω2f2di2 + ∑kiFi( t - tf)dFi + ∑ρiViCi τd
dt = 0 .
Đây là phương trình vi phân cân bằng công suất nhiệt trao đổi qua diện tích dF của
TBTĐN. Nó cho phép tìm được luật biến thiên theo thời gian τ của nhiệt độ các chất lỏng,
thông qua di = Cpdt.
1.3.1.2. Các phương trình cân bằng nhiệt đặc biệt.
1) Khi thiết bị cách nhiệt tốt với môi trường: Coi Qk = 0, (∆I1 + ∆I2)τ + ∆U = 0.
2) Khi TBTĐN làm việc ổn định, coi ∆U = 0, ∆I1 + ∆I2 + Qk = 0.
3) Khi thiết bị được cách nhiệt, làm việc ổn định thì:
∆I1 + ∆I2 = 0 hay G1( //1/1 ii − ) = G2Cp2( /2//2 ii − )
G1Cp1( //1/1 tt − ) = G2Cp2( /2//2 tt − ) hay W1( //1/1 tt − ) = W2( /2//2 tt − )
Dạng vi phân của phương trình cân bằng nhiệt khi đó là W1dt1 = W2dt2.
4) Khi ∆U = 0, Qk = 0 nếu các chất lỏng có sự chuyển pha trong TBTĐN, từ chất
lỏng Cp đến sôi ở ts nhận nhiệt r, rồi quá nhiệt đến hơi có nhiệt dung riêng Cph, thì phương
trình cân bằng nhiệt có dạng:
G1 ( ) ( )[ ] ( ) ( )[ ]2//222/2222//11111/11 spspspshp ttCrttCGttCrttC −++−=−++−
Hình 1.4. Phân bố nhiệt độ các chất lỏng khi chuyển pha trong TBTĐN cùng chiều.
Ví dụ: + Phương trình cân bằng nhiệt trong lò hơi:
G1Cp1 ( )//1/1 tt − ( ) ( )[ ]2//222/2222 shpsp ttCrttCG −++−= với: 1- khối nóng, 2- H2O.
+ Phương trình cân bằng nhiệt cho bình ngưng: 1- hơi ngưng, 2- nước làm mát.
G1 ( ) ( )[ ] ( )//2/222//11111/11 ttCGttCrttC pspshp −=−++− .
1.3.2. Phương trình truyền nhiệt.
Phương trình truyền nhiệt là những phương trình mô tả lượng nhiệt trao đổi giữa 2
chất lỏng qua mặt TĐN bằng cách truyền nhiệt.
1) Dạng vi phân.
Lượng nhiệt δQ truyền từ chất lỏng nóng nhiệt độ t1 qua diện tích dFx của mặt TĐN
đến chất lỏng lạnh nhiệt độ t2 là:
δQ = k(t1 – t2)dFx = k∆txdFx, W
Trong đó:
k =
1
21
11

⎟⎟⎠

⎜⎜⎝
⎛ ++ ∑
i
i
λ
δ
αα , [W/m
2K] là hệ số truyền nhiệt qua vách thường được coi là
không đổi trong mặt F.
∆tx = t1(x) – t2(x) = f(Fx) là độ chênh nhiệt độ của 2 chất lỏng hai bên mặt dFx, phụ
thuộc vị trí Fx.
2) Dạng tích phân.
Lượng nhiệt Q truyền từ chất lỏng 1 qua diện tích TĐN F đến chất lỏng 2 là:
Q = ( ) ( ) ,
0
tkFdFFtkdFFtk
F
xxxxxx ∆=∆=∆ ∫∫ [W].
Với: ( )∫ ∆=∆ xxx dFFtFt 1 , gọi là độ chênh trung bình trên mặt F của nhiệt độ 2 chất lỏng.
1.4. XÁC ĐỊNH ĐỘ CHÊNH NHIỆT ĐỘ TRUNG BÌNH t∆ .
Giá trị t∆ phụ thuộc vào t /1 , t //1 , t /2 , t //2 và loại sơ đồ chuyển động của 2 chất lỏng.
1.4.1. Sơ đồ song song ngược chiều.
Phương trình cân bằng nhiệt và truyền nhiệt qua dFx của TBTĐN song song ngược
chiều, theo hình 1.5 có dạng:
⎩⎨

∆=
−=−=
xxdFtkQ
dtdtQ
δ
δ 2211 WW
Theo đó có: dt1-dt2 = - Qδ⎟⎟⎠

⎜⎜⎝
⎛ −
21 W
1
W
1
hay d =∆ xt - mk∆txdFx, với m = ⎟⎟⎠

⎜⎜⎝
⎛ −
21 W
1
W
1 , [k/W].
Nếu m và k không đổi thì: xX
F
x
t
t x
x mkF
t
thaydFmk
t
td xx −=∆
∆−=∆
∆ ∫∫

∆ 00
ln
0
.
Do đó: ∆tx(Fx) = ∆t0exp(-mkFx).
Theo định nghĩa t∆ : t∆ = ( )∫∫ −−∆=−∆=∆ − 1)exp()(1 00 0 mkFxx
F
xxx emkF
tdFmkF
F
tdFFt
F
.
Thay ∆tF = ∆t0exp(-mkF) vào trên sẽ được:
0
0
0
0
0
ln
1
ln
t
t
tt
t
t
t
t
tt
F
FF
F


∆−∆=⎟⎟⎠

⎜⎜⎝
⎛ −∆



∆=∆
với ⎪⎩
⎪⎨⎧ −=∆
−=∆
/
2
//
1
//
2
/
1
ttt
ttt
F
s
t
x
O F
λ
x
d xF
F
2dt
x∆t
∆to
1t
2t
1dt
∆tF
t'1
t'2
t"1
t"2
C2
C1
F
Hình 1.5. Sơ đồ trao đổi nhiệt 2 chất lỏng song song ngược chiều.
1.4.2. Sơ đồ song song cùng chiều.
Phương trình cân bằng nhiệt và truyền nhiệt dFx là: ⎩⎨

∆−=
=−=
xxdFtkQ
dtdtQ
δ
δ 2211 WW
Sau khi đưa về dạng: d∆tx= - xtdFk∆⎟⎟⎠

⎜⎜⎝
⎛ +
21 W
1
W
1 = -mk∆txdFx và biến đổi như trên sẽ
thu được:
00
ln
t
t
ttt
F
F


∆−∆=∆ với ⎪⎩
⎪⎨⎧ −=∆
−=∆
//
2
//
1
/
2
/
10
ttt
ttt
F
t
x
O Fx
d xF
F
t'1
F
1C
C2
t1
t"1
F∆t
dt1
dt2
∆tx
2t"
t2
2t'
o∆t
Hình 1.6. Sơ đồ trao đổi nhiệt 2 chất lỏng song song cùng chiều.
Các công thức trên dùng khi: ∆t0 ≠ ∆tF ≠ 0.
Các công thức đặc biệt khác có thể tính t∆ theo:
=∆t
⎪⎪⎩
⎪⎪⎨

=∆=∆
∆+∆
≠∆=∆∆
00
)(
2
1
0
0
0
0
F
F
F
ttkhi
tt
ttkhit
1.4.3. Các sơ đồ khác.
Để tính t∆ cho các sơ đồ khác (song song đổi chiều, giao nhau 1 hay n lần), ta tính
t∆ theo sơ đồ song song ngược chiều rồi nhân với hệ số ε∆t, được xác định bằng thực
nghiệm và cho ở dạng đồ thị.
ε∆t = f( p = /
2
/
1
/
2
//
2
tt
tt

− , R = /
2
//
2
//
1
/
1
tt
tt

− , loại sơ đồ): t∆ = t∆ ↑↓. ε∆t (P, R,loại sơ đồ).
1.5. CÁC CHỈ TIÊU CHẤT LƯỢNG CỦA TBTĐN .
Để đánh giá chất lượng của TBTĐN, người ta dựa vào các chỉ tiêu sau đây:
1.5.1. Chỉ tiêu về năng lượng.
Để đặc trưng cho một công suất nhiệt thu được ứng với 1kW điện tiêu hao khi vận
hành bơm quạt của thiết bị, người ta dùng chỉ tiêu năng lượng E0, được định nghĩa:
E0 = Công suất nhiệt sản phẩm thu được từ môi chất
Tổng công suất để bơm quạt sản phẩm và môi chất
E0 = 35
)( ///
+
−=+
spiiG
NqNb
Q . E0 càng lớn thì thiết bị càng tốt.
Ví dụ: Lò hơi sản xuất G = 1000 kg/h hơi có i// = 2770 kJ/kg, từ nước có Cp= 4,18 kJ/kgK,
t/ = 270C, bơm nước tiêu thụ NB = 5kW, quạt gió tiêu thụ Nq = 3kW thì có:
E0 =
( )
3,92
35
27.18,42770
3600
1000
=+
−⎟⎠
⎞⎜⎝

1.5.2. Các chỉ tiêu kết cấu.
1.5.2.1. Độ gọn của thiết bị
Độ gọn của thiết bị, ký hiệu là G, được định nghĩa:
G = Diện tích mặt trao đổi nhiệt F = F , [m2/m3]
Thể tích hộp bao thiết bị V V
G càng lớn, thiết bị càng gọn.
Ví dụ: Lò hơi nói trên có G = 32 /6,1
4.2.2
25 mm
V
F ==
1.5.2.2. Suất tiêu hao kim loại.
Suất tiêu hao kim loại, ký hiệu là b, được định nghĩa:
b = Khối lượng của thiết bị = M , [kg/m2]
Diện tích mặt trao đổi nhiệt F
b càng nhỏ thiết bị càng ít tốn kim loại.
Ví dụ: Lò hơi nói trên có b = 2/50
25
1200 mkg= .
1.5.3. Hiệu suất trao đổi nhiệt của thiết bị.
1.5.3.1. Định nghĩa:
Hi
 

Các chủ đề có liên quan khác

Top