Download miễn phí Bài giảng Bộ xử lý





-Kiến trúc bus đôi độc lập DIB (Dual Independent Bus)
Mở rộng băng thông của bus dữ liệu nhập/xuất, với việc tách thành hai bus độc lập:
FSB (Front Side Bus): cho hệ thống (bảng mạch chính)
BSB (Back Side Bus): cho cache L2, cho phép tăng tốc độ truy nhập cache
Cache L2: tách khỏi mainboard để đưa lên cùng bản mạch bộ xử lý hay được tích hợp trong khuôn bộ xử lý
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

Chương 3 BỘ XỬ LÝ Các đặc tả bộ xử lý Các bộ xử lý Intel Các bộ xử lý công nghệ tiên tiến Nội dung BỘ XỬ LÝ Công nghệ chế tạo: mạch tổ hợp cỡ lớn VLSI (Very Large Scale Integrated Circuit). Bộ xử lý - CPU (Central Processing Unit): Bộ não của hệ thống máy tính Chức năng ? Thực hiện chương trình chứa trong bộ nhớ Cơ chế: nhập tuần tự từng lệnh từ bộ nhớ và xử lý Điều khiển hoạt động trao đổi dữ liệu giữa CPU và bộ nhớ, giữa CPU với thiết bị vào/ra và với các thiết bị khác. 1. CÁC ĐẶC TẢ CỦA BỘ XỬ LÝ Tốc độ của bộ xử lý Hệ số nhân tốc xung nhịp Bus dữ liệu Bộ nhớ đệm Cache Các loại đế cắm (Socket) và khe cắm (Slot) bộ xử lý Công suất tiêu thụ và vấn đề làm mát cho bộ xử lý 1. CÁC ĐẶC TẢ CỦA BỘ XỬ LÝ Tốc độ đồng hồ đo bằng tần số (Hz) = số chu kỳ nhịp /giây. Chu kỳ nhịp (Clock Cycle): thành phần thời gian nhỏ nhất của CPU Tốc độ của bộ xử lý = Tần số hoạt động ?  Thực thi chương trình  Thực hiện lệnh Chu kỳ lệnh (Inst. cycle) Thời gian cần để thực hiện xong một lệnh = 1 hay nhiều chu kỳ máy (machine cycle). Chu kỳ máy (machine cycle) Thực hiện một cuộc chuyển dữ liệu đơn thuần = 1 hay nhiều hơn một chu kỳ nhịp đồng hồ. Chu kỳ đợi (Wait state) Số chu kỳ để thực hiện lần truyền dữ liệu đầu tiên. Mỗi CPU cần số chu kỳ nhịp và thời gian khác nhau để thực thi lệnh. Trước khi truyền dữ liệu cần thêm chu kỳ đợi Khó đánh giá chính xác: Phụ thuộc nhiều yếu tố Dựa vào phép đo lường tiêu chuẩn (benchmark) Intel Tiêu chuẩn iCOM Tốc độ của bộ xử lý ? Tốc độ thực hiện lệnh AMD, Cyrix PR (Performance Rating) # ? ! ? Khó khăn: Từ 486DX2: tốc độ CPU nhanh gấp nhiều lần FSB Mỗi bảng mạch có thể xác lập để chạy với vài loại CPU tốc độ khác nhau, thông qua hệ số nhân xung nhịp. VD: 133MHz, 2.8GHz VD: PR 133, PR533 f - tần số nhịp làm việc của CPU; N - số đơn vị xử lý số học-logic ALU C - số chu kỳ nhịp trung bình của một lệnh tw- Hệ số thời gian truy nhập bộ nhớ ( cả chu kỳ đợi) ? Đánh giá tốc độ Yêu cầu nâng tốc độ CPU Tốc độ Mainboard không đáp ứng được Bộ nhân tốc: tích hợp vào trong CPU  Hệ số nhân tốc (bus Ratio) CPU speed = Host Clock x Bus Ratio (Tốc độ CPU = Tốc độ Bus x Hệ số nhân) Hệ số nhân tốc xung nhịp ? Tốc độ CPU Thiết lập tốc độ và hệ số nhân (multiplier) ? Dùng jumper hay cấu hình tốc độ trong BIOS ? Overclocking:  Cấu thành từ các đường dữ liệu và các thanh ghi trong. Kích thước thanh ghi: xác định dạng phần mềm và lệnh mà bộ xử lý có thể chạy. CPU từ 386  Pentium III là các bộ xử lý 32-bit,  có thể chạy các hệ điều hành và phần mềm 32-bit. Bus dữ liệu Bus dữ liệu trong 8088, 386SX: bus dữ liệu trong rộng gấp đôi bus dữ liệu ngoài  ??? Truyền và nạp dữ liệu bên trong CPU với kích thước đầy đủ = kích thước thanh ghi Truyền và nạp dữ liệu với bên ngoài sẽ bị hạn chế bởi độ rộng của bus dữ liệu ngoài. Pentium: bus dữ liệu ngoài 64-bit, thanh ghi chỉ có 32-bit, Do có 2 pipeline 32-bit để xử lý, nên việc nạp dữ liệu rất hiệu quả. Tập hợp các dây để nhận gửi dữ liệu. Độ rộng bus dữ liệu ngoài xác định kích thước một khối bộ nhớ (a bank of memory). Bus dữ liệu Bus dữ liệu ngoài Bank RAM? Lắp đặt bộ nhớ RAM? Kích thước bus dữ liệu: 286, 386SX : 16-bit 386DX, 486: 32-bit Pentium: 64-bit Có thể ghi/đọc bộ nhớ cùng một lúc với 16, 32 hay 64-bit ? Tốc độ xử lý của CPU phụ thuộc vào: Tốc độ truy nhập bộ nhớ chính Bộ nhớ chính (bộ nhớ thao tác- Main memory) Dung lượng nhớ khá hạn chế Dùng DRAM  Tốc độ truy nhập chậm (~ 100÷10 ns) Phải làm tươi thông tin (Refresh) ! Chỉ dùng bộ nhớ chính  hạn chế khả năng của CPU. Tổ chức bộ nhớ PC theo kiểu hệ thống có phân cấp: Tăng tốc độ xử lý của CPU Đảm bảo khả năng lưu trữ lớn CACHE Thêm vào hệ thống một bộ nhớ có tốc độ truy nhập cao, dùng SRAM  Bộ nhớ cache CACHE Dùng lưu trữ các lệnh và dữ liệu thường sử dụng nhiều trong quá trình thực hiện chương trình. Cơ chế nạp lệnh, suy đoán cho phép đoán nhu cầu của CPU và nạp trước các dữ liệu cần thiết vào cache. Khi CPU có yêu cầu, dữ liệu sẽ được nạp từ cache thay vì nạp từ bộ nhớ chính, tăng hiệu năng xử lý hệ thống CACHE Cache L1 (Cache Level 1) Lưu trữ một số mã lệnh và dữ liệu của công việc hiện thời. Dung lượng nhỏ: ban đầu là 8 KiB, sau tăng lên 16, 32 KiB... Được thiết kế trong khuôn bộ xử lý, Tốc độ xung nhịp bằng với tốc độ BXL Từ kiến trúc P5 cache L1 được tách thành hai phần riêng: ICache cho mã lệnh DCache cho dữ liệu Pentium IVchỉ còn 8 KiB DCache, ICache cho mã lệnh thay bằng cache ETC (Execution Trace Cache). CACHE Cache L2 (Cache Level 2) - Cache thứ cấp Được dùng nhằm giảm bớt thời gian chờ khi lỡ cache L1 Cache L3 (Integrated Cache Level 3) Cache L3 với 2MB được thiết dành cho một số hệ thống như: PIV Extreme Edition 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 Kỹ thuật cơ bản của các CPU từ 8086  Tăng tốc độ xử lý Một lệnh được chia thành n phép xử lý nhỏ Thực hiện lần lượt trong 1 đường ống n giai đoạn (Stage). Quá trình xử lý lệnh đồng thời xảy ra trên mọi giai đoạn Stage1 R1 P1 Stage2 R2 P2 Stage N Rn Pn Kỹ thuật xử lý lệnh kiểu đường ống (Pipeline) Pentium 4 20 Prescott 31 Pen III 10 Pentium Pentium M 14 5 Số giai đoạn đường ống gia tăng Tăng tốc độ thực thi lệnh ? Lỗi tại 1 giai đoạn  toàn đường ống sẽ bị xóa, quá trình xử lý phải thực hiện lại từ đầu Thiết kế đoán rẽ nhánh lệnh Branch Prediction Đế cắm (Socket) và khe cắm (Slot) Socket & Slot ? Đế cắm dạng ZIF (Zero insertion force) Socket 1-7, kiểu PGA hay SPGA: tối đa 321 chân Socket 8 cho Pentium Pro dạng SPGA kép Slot1 cho PII, PIII đầu và Slot2 cho Xeon: dùng các điểm tiếp xúc SK 370 cho PIII Tualtin, Celeron và SK 423/478 cho P4 Slot 1 Socket 370 Socket 478 LGA775 (Land Grid Array 775) LGA775 775 điểm tiếp xúc thay cho các chân cắm  tránh được hiện tượng cong hay gẫy chân CPU Áp dụng từ dòng Prescott thứ 2 (sau Prescott đầu dùng SK478). Thường được hỗ trợ bởi các chipset 9x Kết cấu ổ cắm khá phức tạp, nhưng cho phép chế tạo các CPU có mật độ tiếp xúc (chân) dày đặc hơn, đáp ứng các yêu cầu kỹ thuật nhưng chi phí thấp. Công suất tiêu thụ và vấn đề làm mát cho bộ xử lý Công suất tiêu thụ tăng làm nhiệt lượng tỏa ra lớn khó nâng cao xung nhịp CPU Xu hướng thiết kế: Giảm điện áp làm việc Điện áp 5V  điện áp thấp dưới 2V  siêu thấp < 1V Tần số hoạt động tăng Giảm kích thước các phần tử trong CPU Thay đổi quy trình công nghệ: 10m  0.13m  kích thước nano (90, 65, 45..32 nm) Số transitor tăng: 3.1 triệu của Pentium P5  42 triệu của P4  hàng trăm triệu transitor trên các Core 2 Duo Sử dụng công nghệ vật liệu khác Dây dẫn nhôm  đồng, giúp điện trở giảm Các công nghệ CPU, chipset cũng nhằm vào mục tiêu giảm điện năng tiêu thụ và nhiệt lượng của CPU Công suất tiêu thụ và vấn đề làm mát cho bộ xử lý Gồm một tấm kim loại chia thành các cánh, nhờ vậy tăng được diện tích toả nhiệt. Giữa tấm kim loại và CPU thường được bôi một lớp epoxy, tăng diện tích tiếp xúc bề mặt. Tản nhiệt Quạt gió để hút nhiệt từ các cánh tản nhiệt ra. Các quạt thường lấy điện áp trên mainboard (hay từ bộ nguồn),...
 

Các chủ đề có liên quan khác

Top