Download miễn phí Bài giảng Hệ thống xử lý tín hiệu số 2 chiều





Các phép biến đổi ảnh là cách tiếp cận thứhai được áp dụng trong tín hiệu số
nói chung và trong xửlý ảnh nói riêng. Phép biến đổi (transform) là thuật ngữdùng
đểchỉviệc chuyển đổi sựbiểu diễn của một đối tượng từkhông gian này sang một
không gian khác, từcách biểu diễn này sang cách biểu diễn khác, ví dụphép biến
đổi Fourier, Z, Laplace. Nói chung mục đích của các phép biến đổi ở đây là cốgắng
phân tích đểbiểu diễn tín hiệu dưới dạng tổng có trọng sốcủa các tín hiệu cơbản,
đặc biệt mà ta có thểthấy rõ được tính chất của chúng



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

Bài giảng Xử lý ảnh số 20
GV. Mai Cường Thọ
CHƯƠNG III
HỆ THỐNG XỬ LÝ TÍN HIỆU SỐ 2 CHIỀU
I. Một số tín hiệu 2 chiều cơ bản
I.1. Xung Dirac và xung đơn vị
a, Tín hiệu một chiều
• Xung dirac cho tín hiệu một chiều



=∞=
0;0
0;)(
t
t

Biểu diễn tín hiệu liên tục s(t) thông qua xung dirac:
∫∞
∞−
−= ττδτ dtsts )()()(
• Xung đơn vị, tác động tại thời điểm t=0



==
00
01)(
n
n

Biểu diễn tín hiệu rời rạc s(n), thông qua xung đơn vị


−∞=
−=
k
knksns )()()( δ
b. Tín hiệu hai chiều
• Xung dirac cho tín hiệu 2 chiều


≠≠
==∞=
0,00
0,0),(
yx
yx
yxδ
• Xung đơn vị cho tín hiệu 2 chiều


≠≠
===
0,00
0,01),(
nm
nm
nmδ
• Biểu diễn một tín hiệu 2 chiều
∫ ∫∞
∞−

∞−
−−= dudvvyuxvusyxs ),(),(),( δ Dùng cho tín hiệu liên tục
∑∑

−∞=

−∞=
−−=
k l
lnkmlksnms ),(),(),( δ Dùng cho tín hiệu rời rạc
t 0
δ(t)
δ(n)
n 0
y
x 0
δ(x,y)
Bài giảng Xử lý ảnh số 21
GV. Mai Cường Thọ
I.2 Tín hiệu đơn vị và bước nhảy đơn vị
a. Tín hiệu một chiều
• Tín hiệu đơn vị


<
≥=
00
01)(
t
t
tu
• Bước nhảy đơn vị


<
≥=
00
01)(
n
n
nu
b. Tín hiệu 2 chiều
Với tín hiệu liên tục


<<
≥≥=
0,00
0,01),(
yx
yx
yxu
Với tín hiệu rời rạc


<<
≥≥=
0,00
0,01),(
nm
nm
nmu
II. Hệ thống xử lý tín hiệu 2 chiều
Ta có:
nmSTnmz
yxSTyxz
)],([),(
)],([),(
=
=
S: Tác động
T: Toán tử của hệ thống
Z: Đáp ứng của hệ thống
t
1
0
0 1 2 3 4
………
y
x
u(x,y)
x
u(m,n)
y
T[…]
S(x,y)
S(m,n)
Z(x,y)
Z(m,n)
Bài giảng Xử lý ảnh số 22
GV. Mai Cường Thọ
• Hệ thống tuyến tính (T là toán tử tuyến tính): Hệ thỏa mãn nguyên lý xếp chồng
và nguyên lý tỉ lệ.
nếu ),(),();,(),( 2211 yxZyxSyxZyxS TT →→ ,
thì với ),(.),(.),(),(),( 2121 yxZbyxZayxbSyxaSyxS T +→+=
- Nếu T là toán tử tuyến tính thì ta có
dudvvyuxvuSyxS ),(),(),( −−= ∫ ∫∞
∞−

∞−
δ
∫ ∫∫ ∫ ∞
∞−

∞−

∞−

∞−
−−=−−== dudvvyuxTvuSdudvvyuxvuSTyxSTyxZ )],([),(]),(),([)],([),( δδ
Nhớ lại
yxhvyuxT uv ),()],([ =−−δ : đáp ứng của hệ thống TTBB đối với tác động là xung
dirac tại tọa độ (u,v) - gọi là đáp ứng xung của hệ thống tuyến tính bất biến. Ta thấy
rằng đáp ứng của hệ thống phụ thuộc vào thời điểm tác động nên rất khó xây dựng
hệ thống.
• Với hệ thống tuyến tính bất biến dịch:
yxhyxT ),()],([ =δ
vyuxhvyuxT ),()],([ −−=−−δ
Ta có công thức tích chập (convolution)
),(),(),(
),(),(),(
yxhyxSyxZ
dudvvyuxhvuSyxZ
⊗=
−−= ∫ ∫∞
∞−

∞−
Với tín hiệu rời rạc, ta có công thức tổng chập
),(),(),(
),(),(),(
nmhnmSnmZ
lnkmhlkSnmZ
k l
⊗=
−−= ∑ ∑

−∞=

−∞=
Ví dụ: Tính tổng chập sau: ),(),(),( nmhnmSnmx ⊗= với
n
-1 1
1 1
S(m,n)
m
n
4 1
2 3
h(m,n)
m
Bài giảng Xử lý ảnh số 23
GV. Mai Cường Thọ
)1,1(),1()1,(),(
)1,1()1,1(),1()0,1()1,()1,0(),()0,0(
)1,1(),1(),(),0(),(),(
),(),(),(),(),(
1
0
1
0
1
0
1
0
−−+−−−+=
−−+−+−+=
−−+−=−−=
−−=⊗=
∑∑ ∑ ∑
∑∑
= = = =

∞=

−∞=
nmhnmhnmhnmh
nmhSnmhSnmhSnmhS
nmhlSlnmhlSlnkmxhlkS
lnkmhlkSnmhnmSnmx
k l l l
k l
MatLab: Lệnh: conv2(S,h)
2.3 Các tính chất của tổng chập
a. Tính giao hoán
∑∑ ∑∑

−∞=

−∞=

−∞=

−∞=
−−=−−
⊗=⊗
k l k l
lnkmSlkGknkmGlkS
nmSnmGnmGnmS
),(),(),(),(
),(),(),(),(
b. Tính kết hợp
[ ] [ ] ),(),(),(),(),(),(),(),(),( 321321321 nmSnmSnmSnmSnmSnmSnmSnmSnmS ⊗⊗=⊗⊗=⊗⊗
Ghép nối nối tiếp 2 hệ thống tuyến tính bất biến có đáp ứng xung h1, h2
tương đương với:
tương đương với
h1(m,n) h2(m,n) V(m,n) G(m,n) S(m,n)
n
4 1
2 3
h(m,n)
m
2
1 4
n
0 0
3
h(m,n-1)
m
3 2 0
0
0
n
0 0
h(m-1,n-1)
m
1 4
3 2
1 6 3
n
5 1
x(m,n)
m
-4
5
0
4
n
1 0
h(m-1,n)
m
2 3
S(m,n) G(m,n) h1(m,n)⊗ h2(m,n)
h1(m,n) h2(m,n) G(m,n) S(m,n)
Bài giảng Xử lý ảnh số 24
GV. Mai Cường Thọ
c. Tính chất phân phối với phép cộng
[ ] ),(),(),(),(),(),(),( 3121321 nmSnmSnmSnmSnmSnmSnmS ⊗+⊗=+⊗
Ghép nối song song 2 hệ thống tuyến tính bất biến có đáp ứng xung h1, h2
Tương đương với
Ví dụ:
Cho một hệ thống xử lý ảnh được thiết kế như hình vẽ, hãy xác định đáp ứng G(m,n)
của hệ thống.
Với
Giải
Ta có
[ ]
[ ]),(),(),(),(
),(),(),(),(),(),(
321
32
nmhnmhnmhnmS
nmhnmhnmSnmhnmSnmG
⊗+⊗=
⊗+⊗=
S(m,n) g(m,n) h1(m,n) + h2(m,n)
n
-1 1
1 1
h1(m,n)
m
n
1 j
1 j
h2(m,n)
m
n
1 -j
1 j
h3(m,n)
m
n
1 1
1 1
S(m,n)
m
h1(m ,n)
h2(m ,n) h3(m ,n)
+
G(m,n) S(m,n)
h1(m,n)
h2(m,n)
+
V1(m,n)
V2(m,n)
S(m,n) G(m,n)
Bài giảng Xử lý ảnh số 25
GV. Mai Cường Thọ
Tính riêng: h2(m,n)⊗h3(m,n)
)1,1(),1()1,(),(
)1.1()1,1(),1()0,1()1,()1,0(),()0,0(
),1(),1(),(),0(
),(),(),(),(
3333
32323232
1
0
32
1
0
32
1
0
1
0
3232
−−+−+−+=
−−+−+−+=
−−+−=
−−⋅=⊗
∑∑
∑∑
==
= =
nmjhnmhnmhnmjh
nmhhnmhhnmhhnmhh
lnmhlhlnmhlh
lnkmhlkhnmhnmh
ll
k l
h(m,n)=h1(m,n)+h*(m,n)
Kết quả cuối cùng của hệ thống ta có:
∑ ∑

−∞=

−∞=
−−=⊗
k l
lnkmhlkSnmhnmS ),(),(),(),(
Khai triển công thức trên với S(m,n) và H(m,n) ta sẽ thu được tín hiệu ra G(m,n).
1
-j 1
n
0 0
j
h3(m,n-1)
m
n
1
0 1
-j 0
j h3(m-1,n)
m
jh3(m-1,n-1)
n
0
0 1
0 0
j
m
0 j
-1
h2⊗h3
n
j 1
j
-1 jh3(m,n)
m
h*(m,n)
n
1
0 2
0 1
2j
m
1 2j
-1
h(m,n)
n
1
1 3
-1 2
2j
m
1 2j
-1
Bài giảng Xử lý ảnh số 26
GV. Mai Cường Thọ
CHƯƠNG IV
CÁC PHÉP BIẾN ĐỔI ẢNH
Các phép biến đổi ảnh là cách tiếp cận thứ hai được áp dụng trong tín hiệu số
nói chung và trong xử lý ảnh nói riêng. Phép biến đổi (transform) là thuật ngữ dùng
để chỉ việc chuyển đổi sự biểu diễn của một đối tượng từ không gian này sang một
không gian khác, từ cách biểu diễn này sang cách biểu diễn khác, ví dụ phép biến
đổi Fourier, Z, Laplace. Nói chung mục đích của các phép biến đổi ở đây là cố gắng
phân tích để biểu diễn tín hiệu dưới dạng tổng có trọng số của các tín hiệu cơ bản,
đặc biệt mà ta có thể thấy rõ được tính chất của chúng.
- Nhớ lại phép biến đổi Fourier tín hiệu rời rạc một chiều:



−∞=


−∞=
=
=
n
knj
k
knj
enx
N
kX
ekXnx
ω
ω
).(1)(
).()(
Ta có ωωω sincos je j += là một tín hiệu điều hòa phức cơ bản.
- Đối với ảnh số, ta có thể mô tả như sau:
Các Sij là các ảnh cơ sở, các aij là các hệ số phân tích
I. Phép biến đổi Unitar (Unitary Transform)
1. Ma trận trực giao và ma trận Unitar
• Cho A là một ma trận vuông
• A trực giao khi: hay IAAT =
Trong đó A-1 là ma trận đảo của A.
AT là ma trận chuyển vị của A.
• Ma trận A được gọi là ma trận Unitar nếu:
A-1= A*T hay AA*T= I
A* là ma trận liên hợp của A
S S11 S12 SMN a11 + a11 + aMN + …
AA T=−1
Bài giảng Xử lý ảnh số 27
GV. Mai Cường Thọ
Các phần tử của A* được xác định như sau với aik= x + jy thì a*ik = x – jy
(dạng số phức tổng quát).
Nhận xét :
Nếu các phần tử của ma trận A có giá trị là số thực thì
A trực giao ⇔ A unitar
Ví dụ 1
Xét xem ma trận A sau đây có phải là ma trận Unitar không
Giải :
Ta có ,
A trực giao ⇒ A Unitar
Ví dụ 2
Kiểm tra tính Unitar của ma trận sau
Nhận xét
Tuy nhiên
Vậy A không Unitar
Ví...
 

Các chủ đề có liên quan khác

Top