mituot1610

New Member

Download miễn phí Khóa luận Nhập môn lý thuyết Knot (chuyên ngành hình học)





MỤC LỤC. 1
MỘT SỐKÝ HIỆU . 3
LỜI NÓI ĐẦU . 4
CHƯƠNG I : NHÓM CƠBẢN. 6
I. ĐỒNG LUÂN . 6
1.Quan hệ đồng luân giữa hai ánh xạliên tục. 6
1.1. Kiến thức chuẩn bị. 6
1.2. Định nghĩa.6
1.3. Minh họa khái niệm đồng luân giữa hai ánh xạliên tục: . 7
1.4. Định lý. 7
2. Quan hệ đồng luân giữa hai không gian tôpô. 8
II.NHÓM CƠBẢN . 9
1. Khái niệm đường . 9
1.1. Định nghĩa . 9
1.2. Định nghĩa . 10
1.3. Định nghĩa . 10
2. Đường đóng. 11
2.1.Định nghĩa. 11
2.2.Tích các đường đóng. 11
2.3. Tính chất. 12
3. Không gian liên thông đường . 13
3.1. Định nghĩa 1. 13
3.2. Định nghĩa 2. 13
3.3. Tính chất. 13
4. Nhóm cơbản . 13
4.1. Định nghĩa. 13
4.2. Định lý. 14
5. Tính chất hàm tửcủa 1 π. 15
5.1 Định lý 1. 15
5.2 Định lý 2. 17
5.3. Định lý 3. 19
CHƯƠNG II: KNOT. 21
I. KNOT . 21
II. PHÉP DỊCH CHUYỂN. 27
III. MỘT SỐKNOT ĐẶC BIỆT . 30
IV. MỘT VÀI BẤT BIẾN CỦA KNOT . 37
V. TÍNH CHẤT BA MÀU CỦA KNOT . 46
CHƯƠNG III : NHÓM CƠBẢN CỦA KNOT . 50
I. ĐỊNH LÝ VAN-KAMPEN . 50
1. Định lý . 50
2. Nhận xét. 56
3.Hệquả. 57
II. NHÓM CƠBẢN CỦA KNOT . 58
1. Định nghĩa . 58
2. Đại diện Wirtinger của knot . 59
2.1.Định lý Wirtinger. 59
2.2.Chú ý. 65
3.Ví dụ. 66
3.1. Knot tầm thường . 66
3.2. Knot ba lá. 66
3.3.Knot hình số8. 67
Kết Luận. 68
TÀI LIỆU THAM KHẢO 69



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

] [ ]ε εεε=⇒ =⇒=⇒=⇒ X XXXl flffflfflf *** oooo
Suy ra *f là đơn cấu. (1)
⊕ Với mọi [ ] ),( 01 yYlY π∈ ta có :
[ ] [ ] [ ] ( )* **Y Y Yl f f l f f l⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦o
( 1 0[ ] ( , )Yf l X xπ∈o vì nếu Yl là phép đồng luân của các đường đóng tại 0y
trong ),( 0yY thì [ ]Yf lo là phép đồng luân của các đường đóng tại 0x trong
),( 0xX ).
Do đó *f là toàn cấu. (2)
Từ (1), (2) suy ra f∗ là đẳng cấu hay ( ) ( )1 0 1 0, ,X x Y yπ π≅ .
(ii) Xét ánh xạ: ( )( ) ( ) ( )1 0 0 1 0 1 0: , , , ,X Y x y X x Y yθ π π π× → ⊕
[ ] [ ] [ ]( )1 2 ,l l lρ ρa o o
trong đó :
( )
( )
1
2
:
,
:
,
X Y X
x y x
X Y Y
x y y
ρ
ρ
× →
× →
a
a
GVHD: PGS-TS LÊ ANH VŨ SVTH: LÊ THÀNH TUẤN
Khóa Luận Tốt Nghiệp 19
Dễ thấy θ là một song ánh và đồng thời là một đồng cấu.
Do vậy nên ta có: ( )( ) ( ) ( )1 0 0 1 0 1 0, , , ,X Y x y X x Y yπ π π× ≅ ⊕ .
5.3. Định lý 3
(i) Nếu , :f g X Y→ là các ánh xạ liên tục và ( )Ff g thì ta có f g∗ ∗= .
(ii) Nếu X và Y là hai không gian liên thông đường và X Y thì ta có
( ) ( )1 1X Yπ π≅ .
Chứng minh
(i) Với mỗi [ ]0,1t∈ xét ánh xạ :F X I Y∗ × → thoả ( ) ( )( ), ,F x t F l x t∗ = .
Hiển nhiên ta thấy:
• F∗ liên tục.
• ( ) ( )( ) ( )( ) ( )( ),0 ,0F x F l x f l x f l x∗ = = = o .
• ( ) ( )( ) ( )( ) ( )( ),1 ,1F x F l x g l x g l x∗ = = = o .
Do đó
( )F
f l g l
∗o o hay nói cách khác f g∗ ∗= .
(ii) Do X Y nên tồn tại các ánh xạ liên tục :
:
:
f X Y
g X Y


thỏa mãn tính chất:
Y
X
f g Id
g f Id
⎧⎨⎩
o
o
Khi đó ta có :
( ) ( ) ( )
( ) ( ) ( )
1
1
Y Y Y
X X X
f g Id f g f g Id Id
g f Id g f g f Id Id
π
π
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
⇒ = = =
⇒ = = =
o o o
o o o
Vậy ta có ( ) ( )1 1:f X Yπ π∗ → là đẳng cấu (theo phần chứng minh định lý 2i).
Do đó nên ( ) ( )1 1X Yπ π≅ .
GVHD: PGS-TS LÊ ANH VŨ SVTH: LÊ THÀNH TUẤN
Khóa Luận Tốt Nghiệp 20
Tóm lại, chương này chúng ta đã xây dựng thế nào là hai không gian
đồng luân. Từ đó nêu lên mối liên hệ giữa quan hệ đồng luân và đồng phôi:
mọi không gian đồng phôi thì cùng kiểu đồng luân. Mặc khác chúng ta cũng đã
xây dựng định nghĩa nhóm cơ bản của không gian tôpô X tại điểm 0x bằng
phép toán nối các đường đóng trên ( )1 0,X xπ . Qua đó cho ta thấy được rằng
nhóm cơ bản là một bất biến tôpô thông qua việc chứng minh nó là bất biến
đồng luân, tức là hai không gian cùng kiểu đồng luân thì có các nhóm cơ bản
đẳng cấu (điều này cho phép chứng minh tính không đồng phôi của hai không
gian tôpô bằng cách chỉ ra nhóm cơ bản của chúng là không đẳng cấu).
GVHD: PGS-TS LÊ ANH VŨ SVTH: LÊ THÀNH TUẤN
Khóa Luận Tốt Nghiệp 21
CHƯƠNG II: KNOT
Trong phần này ta sẽ nghiên cứu knot (nút) – hình ảnh của một knot dây
trong thực tế. Qua đó ta đi đến các khái niệm liên quan như cung, crossing,
ảnh đối xứng, tích liên thông, mã số,….
I. KNOT
1. Định nghĩa
1.1. Sự hiểu biết trực quan về knot
Ta lấy một sợi dây rồi thắt một cái gút lỏng trên nó, sau đó nối hai đầu sợi
dây lại ta sẽ được một knot.
Ta hiểu một cách trực quan ban đầu: knot là một đường cong đóng có thắt
gút trong không gian mà nó không cắt nhau tại bất cứ chỗ nào trên nó .
Cùng một knot có rất nhiều hình ảnh khác nhau biểu diễn nó (chẳng hạn như
các hình bên dưới biểu diễn cho cùng knot hình số 8).
Sau đây là cách định nghĩa knot thông qua công cụ tôpô ( phép đồng phôi ).
1.2. Định nghĩa
Một không gian con K của 3R được gọi là một knot nếu nó là ảnh đồng phôi
của đường tròn 1S . Tức là :
(K là knot)⇔ ( 1:f S K∃ → là một phép đồng phôi).
GVHD: PGS-TS LÊ ANH VŨ SVTH: LÊ THÀNH TUẤN
Khóa Luận Tốt Nghiệp 22
1.3. Ví dụ
Xét 1 1:Id S S→
Hiển nhiên Id là một phép đồng phôi từ 1S lên 1S . Do đó ta có 1S là một knot. Ta
gọi 1S là knot tầm thường ( unknot ).
1.4. Nhận xét
• Một knot là một đường đóng trong 3R .
• Mọi knot trong 3R đều đồng phôi với nhau.
Một vài knot thường gặp:
Vấn đề đặt ra ở đây là làm thế nào chúng ta có thể biết được những knot có
hình biểu diễn khác nhau có phải là những knot khác nhau hay không? Để làm rõ
điều này ta sẽ đi tìm hiểu về đồ thị của knot.
2. Đồ thị của knot
Những hình vẽ dùng để biểu diễn cho knot được gọi là đồ thị của knot, nó là
thay mặt trong 2R của một vật thể ba chiều.
2.1. Định nghĩa
Knot ba lá Knot hình số 8
GVHD: PGS-TS LÊ ANH VŨ SVTH: LÊ THÀNH TUẤN
Khóa Luận Tốt Nghiệp 23
Một đồ thị của knot trong 2R được tạo thành từ một số hữu hạn các cung và
các crossing (nơi giao nhau giữa cung dưới và cung trên). Tại mỗi crossing, ta
thu được thông tin về sự chênh lệch độ cao giữa hai cung tương ứng trên knot.
2.2. Chú ý
2.2.1. Trong đồ thị của một knot không tồn tại những hình ảnh sau:
2.2.2. Trong một đồ thị nếu ta bỏ qua ý nghĩa của crossing thì khi đó đồ thị
trở thành một vết trong 2R .
2.3. Nhận xét
2.3.1. Một knot có thể được biểu diễn bởi nhiều đồ thị khác nhau. Chẳng
hạn như ta có ba đồ thị biểu diễn của knot hình số 8.
đồ thị vết
Cung trên
Cung dưới
Cung dưới
crossing
GVHD: PGS-TS LÊ ANH VŨ SVTH: LÊ THÀNH TUẤN
Khóa Luận Tốt Nghiệp 24
2.3.2. Số crossing nhỏ nhất trong tất cả các đồ thị cùng biểu diễn một knot
được gọi là số crossing của knot đó và được kí hiệu là c(K).
2.3.3. Dễ thấy rằng không có knot nào có số crossing là 1 và 2. Vì nếu một
knot có một crossing thì nó sẽ có dạng giống như một trong các hình sau.
Khi đó ta có thể dễ dàng tháo crossing đơn này để thu được knot tầm thường.
2.3.4. Một đồ thị của knot K với số crossing bằng c(K) được gọi là đồ thị
tối tiểu của nó.
Ta thấy 1D và 2D đều là những đồ thị biểu diễn knot 3 lá nhưng số crossing của 1D
lớn hơn số crossing của 2D . Đồng thời do (3) nên 2D được gọi là đồ thị tối tiểu của
knot ba lá.
2.4. Ví dụ
1D 2
D
c(K) =8
c(K) =5 c(K) =8
GVHD: PGS-TS LÊ ANH VŨ SVTH: LÊ THÀNH TUẤN
Khóa Luận Tốt Nghiệp 25
3. Bài toán chưa giải quyết
Chứng minh rằng một đồ thị đã đánh giá là đồ thị của knot tầm thường.
Nhiều lý thuyết về knot có cách nhìn nhận và giải quyết vấn đề khác nhau.
Nội dung bài toán được hiểu một cách đơn giản là : nếu như ta cho trước đồ thị của
một knot thì ta có thể kết luận đó là knot tầm thường không? Đương nhiên nếu lấy
một knot từ một mẫu dây và cố gắng sắp xếp để tháo các gút trên knot đó ra. Nếu tất
cả các gút trên sợi dây đều được tháo gỡ thì đó là knot tầm thường. Nhưng điều gì
sẽ xảy ra nếu như trong hai tuần mà ta vẫn không thể nào tháo gỡ hết được tất cả
các gút trên sợi dây. Ta cũng không thể kết luận đó không phải là knot tầm thường
vì có thể ta chưa đủ thời gian để tháo gỡ knot đó ra chăng? Trên thực tế đã có người
tìm ra cách chứng minh một đồ thị đã cho có phải là knot tầm thường không? Đó là
Wolfgang Haken. Theo lý thuyết của ông (1961), chúng ta có thể đưa đồ thị của
knot vào máy tính, máy tính sẽ chạy thuật toán và cho chúng ta kết quả. Nhưng
đáng tiếc, thuật toán mà Haken tìm ra cách đây hơn 40 năm quá phức tạp đến nỗi
chưa có ai viết được chương trình này trên máy tính để thực hiện nó.
4. Link
4.1. Định nghĩa
Một không gian con L của 3R được ...
 

Các chủ đề có liên quan khác

Top