Virgilio

New Member

Download miễn phí Đề tài Phương pháp giả thế thực nghiệm





MỤC LỤC
MỞ ĐẦU 2
1. Lý do chọn đề tài 2
2. Mục đích nghiên cứu 3
3. Nhiệm vụ nghiên cứu 4
4. Đối tượng nghiên cứu 4
5. Phạm vi nghiên cứu 4
6. Phương pháp nghiên cứu 4
NỘI DUNG 5
Chương 1: Cơ sở của phương pháp giả thế thực nghiệm 5
1.1. Phương pháp trực giao sóng phẳng 5
1.2. Phương pháp xấp xỉ đóng băng nhân (FCA) 10
Chương 2: Phương pháp giả thế thực nghiệm 11
2.1. Lịch sử hình thành và phát triển 11
2.2. Khái niệm giả thế, mô hình Phillips-Kleinman 12
2.3. Tiêu chuẩn để xây dựng giả thế 16
2.4. Một số phương pháp giả thế 17
2.4.1. Định luật giả thế đầu tiên 17
2.4.2. Mô hình thế ion 22
2.4.3. Giả thế bảo toàn chuẩn 23
2.4.3.1. Điều kiện bảo toàn chuẩn 24
2.4.3.2. Phương pháp tạo ra giả thế bảo toàn chuẩn. 27
2.4.4. Phép biến đổi Kleinman-Bylander 32
2.4.5. Giả thế siêu mềm (Giả thế Vanderbilt) 34
2.5. Ưu điểm và nhược điểm phương pháp giả thế 38
2.5.1. Ưu điểm 38
2.5.2. Nhược điểm 38
KẾT LUẬN 39
TÀI LIỆU THAM KHẢO 40
 
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

. Phương pháp giả thế phục vụ đồng thời hai mục đích. Một mặt nó đưa ra khái niệm quyết định để chứng minh mô hình electron gần tự do của vật rắn, chỉ ra rõ ràng việc tìm hàm sóng trong thế Coulomb ion. Đồng thời nó cung cấp công cụ tính toán tăng độ chính xác việc giải quyết các vấn đề của chất rắn, các bài toán đưa ra có thể tính toán được.
Từ lý thuyết cân bằng của Phillips-Kleinman, phương pháp giả thế đã phát triển và mở rộng: giả thế bảo toàn chuẩn, giả thế mềm, giả thế siêu mềm, giả thế sóng phẳng..., hay kết hợp phương pháp giả thế với phương pháp khác để nghiên cứu cấu trúc vùng năng lượng. Sự phát triển của phương pháp giả thế bảo toàn chuẩn ban đầu và giả thế siêu mềm cho phép tính chính xác, các phương pháp này làm cơ sở cho các nghiên cứu hiện nay và nhiều phương pháp mới nghiên cứu cấu trúc vùng điện tử.
2.2. Khái niệm giả thế, mô hình Phillips-Kleinman
Khi sử dụng hệ sóng phẳng cơ sở trong khai triển hàm sóng, ta cần lưu ý đặc biệt tới vùng gần hạt nhân nguyên tử. Điều này xuất phát từ hai nhân tố chính. Đầu tiên là thế tương tác hạt nhân-electron thay đổi theo dạng , vì vậy nó sẽ phân kì khi . Thứ hai, để đảm bảo hàm sóng của các electron hóa trị trực giao với hàm sóng của các electron nhân (yêu cầu xuất phát từ nguyên lý ngoại trừ Pauli) thì hàm sóng của các electron hóa trị phải dao động rất nhanh trong vùng gần hạt nhân. Hai nhân tố đó dẫn đến phải có động năng lớn, do đó cần thiết phải có một số lượng lớn sóng phẳng. Và cũng cần một lượng lớn sóng phẳng để mô tả các trạng thái được bó hẹp ở gần nhân.
Như ta đã biết, hầu hết các tính chất vật lý của chất rắn phụ thuộc rất vào các electron hóa trị so với các electron nằm trong vùng giới hạn gần nhân. Vì lý do này người ta đã đề xuất sử dụng phương pháp gần đúng dùng giả thế.
Phương pháp giả thế giả thiết rằng các điện tử lõi liên kết chặt chẽ với hạt nhân của chúng, tính chất của hầu hết các nguyên tử được xác định bởi các điện tử hóa trị của chúng, các điện tử lõi hầu như không tham gia vào bất kỳ tương tác hóa học nào. Vì thế năng có thể được khai triển Fourier như sóng phẳng nên có thể thành lập một phương trình xác định mối quan hệ giữa E và . Mặc dù các hệ số Fourier cho các thế năng này không biết được nhưng chúng có thể xác định bằng thực nghiệm đối với một tinh thể cho trước. Vậy: phương pháp giả thế đã bỏ qua các electron nhân và thế tương tác mạnh của hạt nhân và thay thế chúng bằng một giả thế yếu hơn. Tương ứng với việc này là một tập hợp các giả hàm sóng cũng thay thế luôn các hàm sóng thực sự của các electron hóa trị. Đây là một sự mở rộng rất hiệu quả của phương pháp FCA và phương pháp trực giao sóng phẳng (OPW).
Giống phương pháp trực giao sóng phẳng, ban đầu ta đi tìm hàm sóng trực giao. Giả sử hàm sóng của các electron gần nhân (electron lõi) là , hàm sóng của các electron hóa trị là hay còn gọi là hàm mềm. Chọn hàm sóng trực giao với hàm sóng lõi có dạng:
,
trong đó là hệ số trực giao, ta dựa vào điều kiện trực giao để tìm hệ số trực giao như ở phương pháp trực giao sóng phẳng.
Ta có điều kiện trực giao chuẩn hóa:
thay và vào (2.2) để tìm , (2.2) tương đương:
Thay vào ở (2.1) ta được:
.
Ta có phương trình Kohn- Sham cho nguyên tử cô lập có dạng:
.
Dẫn đến phương trình Schrödinger cho sóng trực giao mới:
Thay vào và đưa về dạng của phương trình Schrödinger cho hàm sóng như sau:
.
Đặt: suy ra
ở đây thế năng đẩy, EC là trị riêng của toán tử Hamiltonian lên hàm sóng lõi , E là trị riêng của toán tử Hamiltonian lên hàm sóng . Vì , và các trạng thái nhân được định xứ, nên VR có tác dụng như thế đẩy tác dụng gần.
Do đó (2.6) tương đương:
.
hay gọi Veff=VC được xem như thành phần Fourier của thế hiệu dụng, (2.7) viết lại:
Từ đây suy ra phương trình Schrodinger cho các hàm mềm cũng có dạng:
Các giả hàm mềm không trực giao.
Ta đặt gọi là giả thế hay còn gọi là giả thế Phillips- Kleinman được sinh ra để cân bằng với VC. Nó là thế không địa phương, vì nó phụ thuộc vào hàm sóng . Toán tử VR này tác dụng lên hàm mềm thì:
Hình 5. Sự thay thế thế thực và hàm sóng bằng giả thế và giả hàm sóng.
Ngoài ra VP còn phụ thuộc năng lượng, điều này tạo nên sự khác biệt với thế thực và đây cũng chính là lí do tại sao nó được gọi là giả thế. Hàm sóng gọi là hàm sóng giả. Bên ngoài vùng nhân thì khi hàm sóng lõi bị biến mất. Như vậy, vùng xung quanh nguyên tử với bán kính , gọi là bán kính lõi thì sự tác dụng của nguyên tử đó lên giả thế là không đáng kể. Ngoài ra sự tác động này là tuyến tính theo hướng tách ra và thêm tác dụng độc lập từ mỗi nguyên tử. Vì sự góp thêm lực đẩy trong nhân, giả thế nói chung yếu hơn nhiều so với hàm thế ban đầu. Ta xác định VR qua thực nghiệm hay bằng phương pháp tự phù hợp xuất phát từ lời giải gần đúng nào đó rồi tính VR, dùng giá trị thu được đó để giải phương trình (2.8), rồi lại dùng lời giải này để tìm VR và cứ làm như thế cho đến khi các lời giải thu được trong hai lần liên tiếp khác nhau rất ít thì dừng quá trình tính toán. Những kết quả trên đây được biết đến như thuyết cân bằng của Philips-Kleinman. Vậy thuyết cân bằng của Philips-Kleinman đã đơn giản hóa bài toán vùng năng lượng thành bài toán một điện tử.
Hình 5 chỉ cho ta thấy sự thay thế tương đương giữa thế thực, hàm sóng thực và giả thế, giả hàm sóng. Hàm sóng dao động rất nhanh trong vùng được chiếm giữ bởi các electron nhân bởi vì thế thực của ion rất mạnh. Những dao động đó duy trì sự trực giao giữa trạng thái nhân và các trạng thái của electron hóa trị. Như ta có thể thấy, trong vùng bán kính giới hạn thì giả hàm sóng không hề có nút như là hàm sóng thực. Bên ngoài bán kính giới hạn, giả thế và giả hàm sóng hoàn toàn giống với thế thực và hàm sóng thực. Điều này đảm bảo các kết quả tính toán sử dụng giả thế phải tương đồng với các tính toán từ phương pháp tất cả electron.
Việc thay thế bởi giả thế sẽ giảm tính phức tạp của vấn đề đi rất nhiều. Đầu tiên, việc bỏ đi các electron gần nhân nghĩa là số hàm sóng cần thiết để tính toán sẽ ít hơn; thứ hai, giả thế sẽ không bị phân kì khi như thế thực, và hàm sóng sẽ phẳng hơn khi ở gần nhân (trong vùng bán kính giới hạn), số lượng sóng phẳng cần thiết để mô tả cho phù hợp với các hàm sóng hóa trị cũng vì thế mà ít đi.
Giả thế cũng được xây dựng để các tính chất nhiễu xạ của giả hàm sóng tương đồng với tính chất nhiễu xạ của ion và electron gần nhân. Nhìn chung, điều này sẽ khác đối với mỗi thành phần momen góc của hàm sóng hóa trị, như vậy giả thế sẽ phụ thuộc vào momen góc, thông thường giả thế có dạng:
ở đây là hàm cầu điều hòa, V(r) là giả thế đối với thành phần momen góc thứ . Phương pháp hữu dụng thường dùng để xác định giả thế là đầu tiên xác định trị riêng của hàm sóng của tất cả các electron trong một nguyên tử bằng cách giải phương trình Schrödinger. Một tập hợp thông số ban đ
 

Các chủ đề có liên quan khác

Top