Download miễn phí Đề tài Vấn đề an toàn bức xạ trong lò phản ứng hạt nhân





Mục lục
 
I. Các thế hệ lò phản ứng hạt nhân 2
I.1. Thế hệ lò phản ứng hạt nhân đầu tiên 2
I.2. Lò hạt nhân thế hệ II 2
I.3. Lò hạt nhân thế hệ III 3
I.4. Lò hạt nhân thế hệ III+ 3
I.5. Lò hạt nhân thế hệ IV 4
I.6. Các công nghệ lò phản ứng hạt nhân đang được sử dụng phổ biến 5
I.6.1. Công nghệ lò nước áp lực PWR 5
I.6.2. Lò phản ứng nước sôi BWR 5
I.6.3. Lò phản ứng nước nặng PHWR 5
II. Cấu tạo lò BWR 7
II.1. Hệ thống bình lò phản ứng 7
II.2. Hệ thống thanh nhiên liệu 7
II.3. Hệ thống thanh điều khiển (thanh kiểm soát) 8
II.4. Nồi áp lực lò phản ứng(RPV) 9
II.5. Hệ thống làm sạch nước lò phản ứng 9
II.6. Hệ thống ống dẫn tuần hoàn 10
II.7. Hệ thống các bơm tuần hoàn 10
II.8. Tuabin hơi nước 11
II.9. Hệ thống an toàn lò phản ứng 11
III. Cấu tạo lò PWR 12
III.1. Thùng lò 12
III.2. Bộ phận sinh hơi 14
III.3. Nhiên liệu hạt nhân 16
III.4. Bộ điều áp ( Presurizer) 17
III.5. Tuyếc bin và máy phát điện 18
IV. Cấu tạo của lò CANDU 18
IV.1. Thùng lò 18
IV.2. Kênh nhiên liệu 20
IV.3. Bộ phận tiếp nhiên liệu 21
IV.4. Bộ phận sinh hơi 22
IV.5. Bộ điều áp 22
Tài liệu tham khảo 24
 
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

ả năng tự động cao hơn thế hệ II, công nghệ nhiên liệu được cải tiến, năng suất nhiệt cao, thiết kế gọn hơn, độ an toàn cao hơn. Nó vận hành mà không cần đòi hỏi sự can thiệp của người vận hành. Thêm vào đó, các thiết kế trọng lực hay đối lưu tự nhiên nâng cao khả năng tự bảo vệ của chúng dưới tác động của các sự cố đột ngột xảy ra mà vẫn cho hiệu suất điện cao hơn. Nhà máy điện hạt nhân sử dụng lò phản ứng thế hệ III được xây dựng đầu tiên ở Nhật Bản. Phần Lan là nước duy nhất ở EU đang xây dựng một nhà máy điện hạt nhân thế hệ III EPR, mua của Pháp với giá ban đầu dự toán 2,5 tỷ Euro, sau đó, vì lý do an toàn phải chấp nhận tăng giá lên 4 tỷ Euro và chậm tiến độ 3 năm. Ngoài ra, hiện chỉ có Điện lực Pháp có dự kiến đặt mua một số lò thế hệ III EPR để thay thế các lò hết thời hạn vận hành vào khoảng các năm 2017-2022.
Lò hạt nhân thế hệ III+
Là thế hệ lò phản ứng được trang bị những cải tiến về tính kinh tế và mức độ an toàn cao hơn thế hệ III.
Ưu điểm của các lò phản ứng hạt nhân thế hệ III so với các thế hệ trước là khả năng xảy ra sự cố ít hơn, khả năng sinh lãi lớn hơn do công suất được tăng lên tới 1600 MW và sử dụng nhiên liệu tiết kiệm hơn. Mỗi lò phản ứng thế hệ III sẽ giúp tiết kiệm 2 tỉ m3 khí đốt mỗi năm và góp phần giảm tới 11 triệu tấn khí thải CO2 so với việc sử dụng nguồn nhiên liệu truyền thống. Ngoài ra giá thành sản xuất điện bằng lò này rẻ hơn 30-50% so với sản xuất điện tại các nhà máy nhiệt điện.
Nhưng mặc dù các lò thế hệ III mới ra đời, nó lại được nhiều chuyên gia xem như đã lỗi thời vì cùng một kỹ thuật với các lò PWR. Giá thành xây dựng của các loại lò này thường cao hơn các loại thế hệ II khoảng 1,5 đến 2 lần (đơn giá cho 1 KW công suất khoảng 6.000 USD). Và chính điều đó đã thúc đẩy các nhà khoa học tiến tới các chương trình nghiên cứu về thế hệ lò phản ứng mới cho hiệu quả tối ưu hơn.
Lò hạt nhân thế hệ IV
Lò phản ứng hạt nhân thế hệ IV đang được 10 nước chung sức nghiên cứu trong khuôn khổ Hiệp định Forum International Generation (FIG), do Mỹ đề xướng từ năm 2000 với 6 kiểu lò (3 lò Neutron nhanh, 3 lò Neutron nhiệt) đã được lựa chọn.
Các lò tương lai này có khuynh hướng tiến tới chu kỳ kín, nghĩa là các lò phải có khả năng đốt cháy phần lớn chất thải (lò nhanh) để đáp ứng 4 tiêu chuẩn chính là tiết kiệm tài nguyên; tiết kiệm về chu kỳ nhiên liệu; hạn chế chất thải phóng xạ; hạn chế sự lan rộng vũ khí nguyên tử.
Vì đang còn trong thời kỳ phôi thai, nên phần lớn các lò này, trên lý thuyết là an toàn hơn, nhưng chưa thể xuất hiện trên thị trường trước những năm 2035-2040, ngoại trừ một phiên bản của lò phản ứng nhiệt độ rất cao (VHTR) và được gọi là Nhà máy hạt nhân thế hệ mới (NGNP) sẽ được hoàn thành trong năm 2021.
Các công nghệ lò phản ứng hạt nhân đang được sử dụng phổ biến
Nói về công nghệ lò phản ứng thì hiện nay trên thế giới có 3 loại chủ yếu gồm công nghệ lò nước áp lực (PWR) chiếm 59,5%; công nghệ lò nước sôi (BWR) chiếm 20,8% và công nghệ lò nước nặng (PHWR) chiếm 7,7%.
Công nghệ lò nước áp lực PWR
Phần lớn các nhà máy điện hạt nhân đều sử dụng công nghệ này. Trong lò áp lực PWR, nước làm mát chính được bơm dưới áp lực cao tới lò phản ứng hạt nhân. Sau đó, nước được nhiệt lượng sinh ra làm nóng lên và chuyển tới máy phát điện hơi nước. Nó chủ yếu được thiết kế cho các nhà máy điện hạt nhân trên tàu ngầm và nó được dùng trong thiết kế nhà máy điện thương mại đầu tiên là nhà máy điện hạt nhân tại Shippingport (Mỹ).
PWR được dùng chủ yếu trong thế hệ lò phản ứng II.
Lò phản ứng nước sôi BWR
Đây là loại lò phản ứng hạt nhân tạo ra điện phổ biến thứ hai sau loại lò PWR. BWR được thiết kế bởi Phòng thí nghiệm quốc gia Idaho và Gereral Electric vào giữa thập niên 1950.
BWR sử dụng nước khử khoáng như là một chất làm mát và điều tiết nơtron. Nhiệt năng được tạo ra bởi sự phân nhiệt hạt nhân trong lõi lò phản ứng và đun sôi nước để nguội để sản xuất hơi nước. Hơi nước sẽ khởi động tuabin và sau đó lại được làm mát để trở về dạng nước lỏng. Nước này lại được chuyển tới lò phản ứng hạt nhân theo một vòng chu kỳ chuyển đổi liên tục như vậy.
Lò phản ứng nước nặng PHWR
Các lò phản ứng dạng PHWR sử dụng nước nặng (đơteri oxit D2O) để làm mát và điều phối nhiệt lượng. Nước nặng được giữ dưới áp lực để làm nóng mà không cần đun sôi. Chi phí sản xuất bằng nước nặng cao hơn so với chi phí sản xuất bằng nước nhẹ nhưng nó lại cho phép các lò phản ứng có thể hoạt động mà không có cơ sở làm giàu nhiên liệu (làm giàu uranium). Nó được xem như là cách để nâng cao năng lực cho các lò phản ứng khi sử dụng các chu trình nhiên liệu thay thế.
Nó được dùng trong các nhà máy điện hạt nhân sản xuất điện hạt nhân từ nhiên liệu hạt nhân. Nhà máy điện hạt nhân nước nặng đầu tiên trên thế giới là nhà máy điện hạt nhân CANDU của Canada được xây dựng bởi AECL.
Tương lai và rủi ro cho ngành điện thế giới
Theo tính toán của Cơ quan Năng lượng Thế giới, tới năm 2050 nhu cầu sử dụng điện của thế giới sẽ tăng lên gấp 3 lần so với hiện tại. Mức nhu cầu tiêu thụ ghê gớm đó không thể được đáp ứng đủ bằng các nguồn “năng lượng mới” như gió, mặt trời mặc dù các nguồn này có thể đóng vai trò quan trọng ở một số vùng nào đó.
Bên cạnh đó, các nguồn nguyên liệu truyền thống để sản xuất điện như than và nước đang ngày càng trở nên cạn dần do sự khai thác quá mức của con người và biến đổi khí hậu làm các nguồn nước trở nên cạn dần. Lượng khí thải lớn của các nhà máy này thải ra hàng ngày phá hoại bầu khí quyển Trái đất cũng đang làm đau đầu các tổ chức môi trường thế giới.
Những nhà máy điện hạt nhân sẽ là phiên bản thay thế hiệu quả cho nhu cầu điện của thế giới trong tương lai gần bởi khả năng cung cấp nguồn điện năng dồi dào, không thải khí độc hại vào bầu khí quyển, công nghệ ngày càng phát triển giúp tận dụng tối đa nguồn nguyên liệu sản xuất. Mức độ an toàn ngày càng được nâng cao. Các nhà máy điện hạt nhân sẽ giúp tiết kiệm được 2,5 tỷ tấn CO2 thải vào khí quyển mỗi năm. Lượng chất thải của nó thải ra cũng rất nhỏ chỉ chiếm 1% so với tổng lượng chất thải của ngành công nghiệp sản xuất điện.
Mặc dù đem lại những lợi ích vô cùng to lớn như vậy nhưng thế giới vẫn dè dặt trong việc phát triển rộng rãi quy mô của các nhà máy điện hạt nhân ở mọi nước. Bởi nguồn năng lượng lớn của nguyên tử cũng là sự ẩn chứa một sức huỷ diệt khủng khiếp. Chỉ cần một lượng nhỏ chất phóng xạ bị rò rỉ thôi thì hậu quả của nó cũng không thể lường hết được.
Cấu tạo lò BWR
Hệ thống bình lò phản ứng
Hình 2. Hệ thống bình lò phản ứng
Hệ thống bình lò phản ứng bao gồm một bình áp suất và các linh kiện bên trong của nó: một lõi lò bao gồm các bó nhiên liệu và các thanh điều khiển, các thiết bị tạo hơi nước: máy tách hơi...
 

Các chủ đề có liên quan khác

Top