Download miễn phí Luận văn Tính điều khiển được hệ phương trình vi phân đại số tuyến tính





Mục lục
Chương 1 PHưƠNG TRÌNH VI PHÂN ĐẠI SỐ TUYẾN TÍNH VỚI HỆ SỐ HẰNG . . .6
§1 Tính giải được của hệ phương trình vi phân đại số tuyến tính với hệ số hằng . . . 6
§2 Tính điều khiển được của hệ phương trình vi phân đại số tuyến tính vớ i hệ số hằng. . . . 35
Chương 2 PHưƠNG TRÌNH VI PHÂN ĐẠI SỐ TUYẾN TÍNH CÓ HỆ SỐBIẾN THIÊN . . . 41
§1 Tính giải được của hệ phương trình vi phân đại số tuyến tính với hệ số biến thiên . . . 41
§2 Tính điều khiển được của hệ phương trì nh vi phân đại số tuyến tí nh với hệ số biến thiên . . . 63
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

C AC E
EC AC EC
C E C EC A
EC EC
AC AC i
Chứng minh
Từ (1.1.3.9) và (1.1.3.10) ta có (1.1.3.25):
0 0
1 1( )i i i i i iEC A AC A A A C A I AC E
.
Từ (1.1.3.11) và (1.1.3.25) với
0i
vừa chứng minh, ta có (1.1.3.26):
0 0 0 0 0AC AC EC EC AC
.
Tương tự, từ (1.1.3.11) và (1.1.3.25) với
0i
ta có (1.1.3.27):
0 0 0 0 0C A C EC A C AC E
.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
21
Từ (1.1.3.12) và (1.1.3.25) với
1i
, ta có (1.1.3.28) và (1.1.3.29):
1 1 1 1 1
1 1 1 1 1
;
.
EC EC AC AC EC
C E C AC E C EC A
Theo (1.1.3.11) ta có:
2
0 0 0 0( )AC AC AC AC
.
Nhân hai vế với
0AC
ta được:
2 3
0 0 0 0 0( ) ( )AC AC AC AC AC
.
Vậy
2 3
0 0 0( ) ( ) ....AC AC AC
Công thức (1.1.3.30) được chứng minh.
Theo (1.1.3.12) ta có:
2
1 1 1 1( )AC AC AC AC
.
Nhân hai vế với
1AC
ta được:
2 3
1 1 1 1 1( ) ( ) ( )AC AC AC AC AC
.
Vậy
2 3 1
1 1 1 1( ) ( ) ... ( 1) ( )
i iAC AC AC AC
Công thức (1.1.3.31) được chứng minh.
1.3.3 Cặp ma trận chính quy
Định nghĩa 1.3.3
Cặp ma trận
( , )E A
được gọi là chính quy nếu tồn tại một số (thực hay phức )
sao cho
det( ) 0A E
.
Nhận xét
1, Nếu sao cho
det( ) 0A E
thì tồn tại vô số có tính chất ấy.
2,
( , );( , )E A A E
là chính quy hay không chính quy đồng thời vì
1
det( ) det ( ) ( ) det( )n
A
A E E E A
,
trong đó n là cấp của ma trận.
Nếu cặp ma trận
( , )E A
là chính quy thì (xem [10]) tồn tại hai ma trận không suy
biến
,P Q
sao cho:
;E PEQ A PAQ
(1.3.3.1)
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
22
với
0 0
0 0
0 0
N
E I
S
 ,
0 0
0 0
0 0
I
A R
I
 , (1.3.3.2)
trong đó
,N R
là những ma trận lũy linh bậc
0; 0k l
tức là
0; 0k lN R
,
còn
S
là ma trận không suy biến.
Chọn
1 1; 0,1,2,...i iC Q C P i

, (1.3.3.3)
trong đó
0 1
1
0 0 0 0 0
0 0 ; 0 0 0
0 0 0 0 0
I
C I C
S
 
1 0 0
0 0 0 ; 2,3,...,
0 0 0
i
i
N
C i (1.3.3.4)
thì
iC
thỏa mãn (1.1.3.9) -(1.1.3.13).
Thật vậy, vì
0 0
1 1
0
1 1
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
N
C EC I I I
S S S
I I I C
I S S
 

nên từ
1 1
0 0C Q C P

ta có
1 1 1 10 0 0 0
1 1 1 1
0 0 0 0
( )( )( )C EC Q C P PEQ Q C P
Q C EC P Q C P C
 
  
Vậy ta có (1.1.3.11).
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
23
Hoàn toàn tương tự:
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
( )( )( )C AC Q C P PAQ Q C P
Q C AC P Q C P C
  
   
Vậy ta có (1.1.3.12).
Bây giờ ta chứng minh (1.1.3.9).

0 1
1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
N I I
EC AC I I R
S S I
I
I I
I
  
nên với
0i
ta có:
1 1 1 1
0 1 0 1
1 1 1
0 1 0 1
( )( ) ( )( )
( ) 0.
EC AC I PEQ Q C P PBQ Q C P I
PEC P PAC P I P EC AC I P
  
      

1
1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
i i
i i
N N I N
EC AC I R
S I
  
0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
i iN N
nên với
1i
ta có
1 1 1 1
1 1
1 1 1
1 1
( )( ) ( )( )
( ) 0.
i i i i
i i i i
EC AC PEQ Q C P PAQ Q C P
PEC P PAC P P EC AC P
  
      
Vậy (1.1.3.9) được chứng minh.
Xét (1.1.3.10).

0 1 0C E C A I
  
nên với
0i
ta có
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
24
1 1 1 1
0 1 0 1
1 1 1
0 1 0 1
( )( ) ( )( )
( ) 0.
C E C A I Q C P PEQ Q C P PAQ I
EQ Q C AQ I Q C E C A I Q
  
     
Vậy
0 1C A C B E
.
Với
1i
ta phải chứng minh
1i iC A C B
. Thật vậy:
1 1 1 1
1 1
1 1
1 1
1
1
( )( ) ( )( )
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0
0 0 0 0 0 0
0 0 0
i i i i
i i i i
i i
i i
C E C A Q C P PEQ Q C P PAQ
Q C EQ Q C AQ C E C A
N N N I
I R
S I
N N
  
      
.
0 0 0
i
Vậy ta có (1.1.3.10).
Hơn nữa,
0; 0k kEC C E
, trong đó k là chỉ số của cặp ma trận
( , )E A
.
Thật vậy,
1 1 1( )( )k k kEC PEQ Q C P PAC P
  
.

10 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
k k
k
N N N
EC I
S
 ,
còn
1 1 1( )( ) 0k k kC E Q C P PEQ Q C EQ
  
do
0kC E
 
.
Vậy
0kC A
.
Với
i k
, do
1 0 0
0 0 0 0
0 0 0
i
i
N
C nên
1 1 0i iC Q C P i

.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
25
Từ đó ta có nhận xét sau.
Nhận xét
Nếu
( , )E A
là cặp ma trận chính quy thì dãy
0 1 1, ,... , ,....k kC C C C
chỉ có hữu hạn
0 1, ,... kC C C
khác không.
1.3.4 Tính duy nhất của ma trận cơ sở
Ta đã thấy ở trên, nếu
( , )E A
là cặp ma trận chính quy với chỉ số
0k
thì các
ma trận cơ sở
iC
được xác định bởi hệ sau:
01
0
1
; (1.3.4.1)
, 0,1,2.... 1. (1.3.4.2)
i i i
i i i
EC AC I
C E C A I i k
1 1 1
0 0 0
0; 0; (1.3.4.3)
; (1.3.4.4)
. (1.3.4.5)
k kEC C E
C C AC
C C EC
Với
0i
thì (1.3.4.1) và (1.3.4.2) có dạng là:
0 1
0 1
EC AC I
C E C A I
Ngoài ra,
1 1( ) 0; ( ) 0
k kEC C E
.
Thật vậy, ta sử dụng (1.3.14) và (1.3.15)
Do
0kEC
nên theo (1.3.14)
1 1 1 1
1 1 1 1 1 1( 1) ( ) ( 1) ... ( 1) ( )
k k k k k
kEC E C E C EC EC E C EC
Suy ra
1( ) 0
kEC
.

0kC E
nên theo (1.3.15) ta có
1 1 1 1
1 1 1 1 1 1( 1) ( ) ( 1) ... ( 1) ( )
k k k k k
kC E C EC E C EC E C E C E
Vậy
1( ) 0
kC E
.
Ta có định lý sau.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
26
Định lý 1.3.4
Giả sử
( , )E A
là cặp ma trận chính quy với chỉ số
0k
. Khi ấy, hệ (1.3.4.1)-
(1.3.4.5) có nghiệm và nghiệm là duy nhất.
1.3.5 Toán tử hiệu chỉnh
Xét toán tử
( )R
được xác định bởi
0 1( ) ...
k
kR C C C
, (1.3.5.1)
trong đó
k
là chỉ số của cặp ma trận
( , )E A
;
, 0,1,...iC i k
là các ma trận cơ sở
thoả mãn hệ:
0
1
0
1
; (1.3.5.2)
, (1.3.5.3)
0,1,2.... 1.
i i i
i i i
EC AC I
C E C A I
i k
1 1 1
0 0 0
0; 0 (1.3.5.4)
(1.3.5.5)
(1.3.5.6)
k kEC C E
C C AC
C C EC
Toán tử
( )R
như trên được gọi là toán tử hiệu chỉnh.
Ta cũng có
0 00; 0 1,2,...i iC AC C AC i k
. (1.3.5.7).
Thật vậy,
1 1 1 1 1 1
0 0 0( )( )( )i i iC AC Q C P PAQ Q C P Q C AC P
     
.

0
1
1
1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 00 0
0 0 0 0 0
0 0 0 0 0 0.
0 0 00 0
i
i
i
I N
C AC I R
IS
N
I
S
  
Tương tự ta có:
0 0iC AC
.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
27
Bổ đề 1.3.5.1
1 1
0 0 0 0
1
0
1
0
( ) ( ) ; (1.3.5.8)
( ) ; (1.3.5.9)
( ) . (1.3.5.10)
i i
i i
I C A C C I AC
I C A C C
C I C A C
Chứng minh
Ta có:
0 0 0 0 0 0 0 0 0 0( ) ( )I C A C IC C AC C I C AC C I AC
.
Suy ra
0 0 0 0( ) ( )C I AC I C A C
. (*)

1 1
0 0 0 0
1 1
0 0 0 0
1 1
0 0 0 0
(*) ( ) ( )( )
( ) ( ) ( )
( ) ( ) .
I C A C I AC I AC
I C A I AC C I AC
I C A C C I AC
Vậy (1.3.5.8) được chứng minh.
Từ (1.3.5.7) ta có
0 0iC AC
. Suy ra
0 0( )i i i iC C C AC I C A C
hay
1 1
0 0 0( ) ( ) ( )i i iI C A C I C A I C A C C
.
Cũng từ (1.3.5.7) ta có
0 0iC AC
. Suy ra
0 0( )i i i iC C C AC C I AC
.
Hay
1 1
0 0 0( ) ( )( )i i iC I AC C I AC I AC C
.
Vậy (1.3.5.10) được chứng minh.
Bổ đề 1.3.5.2
Xét phương trình
( ) ( ) ( )E A x t f t
(1.3.5.11)
với cặp ma trận
( , )E A
chính quy chỉ số
k
. Nghiệm của (1.3.5.11) thoả mãn
phương trình:
0( ) ( ) ( ) ( )I C A x t R f t
. (1.3.5.12)
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
28
Chứng minh
Nhân (1.3.5.11) với
( )R
ta được:
( )( ) ( ) ( ) ( )R E A x t R f t
.
Từ (1.3.5.3) và (1.3.5.4) suy ra
0 1
2 1
0 0 1 1 2 1
0 0 1 0
( ) ...
...
.
k
k
k k
k k k
R E A C C C E A
C A C E C A C E C A C E C A C E
C A C E C A I C A
Vậy
0( ) ( ) ( ) ( )R E A x t I C A x t R f t
.
Như vậy, (1.3.5.12) được chứng minh.
Bổ đề 1.3.5.3
Vectơ
( ) ( )x t R y t
, trong đó
y
thoả mãn phương tr...
 

Các chủ đề có liên quan khác

Top