come_on

New Member

Download miễn phí Đồ án Nghiên cứu xúc tác Pd-Me /C*cho quá trình hydrodeclo hóa





Mô tả cơ chế phản ứng: Đầu tiên, các tâm hoạt tính Pd hấp phụ H2 và chuyển hydro phân tử về dạng hydro nguyên tử. TTCE cũng bị hấp phụ lên các tâm hoạt tính, liên kết C-Cl trong phân tử TTCE bị nguyên tử H và Pd tấn công, hình thành liên kết mới C-H và H-Cl. Sản phẩm phản ứng tách ra khỏi tâm hoạt tính xúc tác và đi ra ngoài.
Có thể thấy vai trò của kim loại Pd vừa là cắt liên kết C – Cl, vừa là tạo ra các hydro nguyên tử (H*) từ H2. Hydro nguyên tử mới sinh ra sẽ thay thế các nguyên từ Cl bị cắt đi, tạo liên kết với Cl còn lại để tạo thành HCl, đồng thời các nguyên tử H cũng được dùng để tái sinh Pd đã mất hoạt tính. Do Pd phải làm cả hai nhiệm vụ nên khả năng xúc tiến quá trình hydro hóa TTCE không cao và khả năng bị ngộ độc bởi HCl sinh ra là rất lớn. Chính vì vậy xúc tác chứa đơn kim loại Pd thường nhanh bị mất hoạt tính.
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

ng pháp khác
Một số phương pháp khác thường dùng như:
Hấp phụ TCE, PCE, DCE bằng C* (với nước hay khí nhiễm bẩn). Phương pháp này có thể tách loại những hợp chất Clo hữu cơ nhưng không phân hủy chúng, cho nên chúng ta cần xử lý sâu hơn.
Khử bằng kim loại: dùng Fe khử clo của các dung dịch hữu cơ.
Dùng dung môi metanol để phân hủy một số hợp chất như PCE.
Các phương pháp này bị giới hạn bởi hiệu quả không cao, quy mô nhỏ, tuy nhiên có thể là giải pháp tạm thời trong trường hợp hạn chế về công nghệ.
Trong số các phương pháp nêu trên, phương pháp HDC tỏ ra ưu việt hơn hẳn và hứa hẹn một tương lai phát triển bền vững trong nền công nghiệp, đồ án này nghiên cứu xúc tác Pd-Me/C* cho quá trình HDC TTCE.
1.3. Phản ứng HDC
1.3.1. Định nghĩa
Phản ứng HDC là phản ứng cắt bỏ liên kết C-Cl của hợp chất clo hữu cơ trong dòng khí H2 và thay thế nguyên tử Cl bằng nguyên tử H.
R – Cl + H2 → R – H + HCl
Ví dụ:
CCl2=CCl2
+
H2
à
CHCl=CCl2
+
HCl
CHCl=CCl2
+
H2
à
CHCl=CHCl
+
HCl
CHCl=CHCl
+
H2
à
CHCl=CH2
+
HCl
CHCl=CH2
+
H2
à
CH2=CH2
+
HCl
CH2=CH2
+
H2
à
CH3-CH3
Người ta sử dụng xúc tác để thúc đẩy phản ứng xảy ra ở điều kiện mềm, nhiệt độ và áp suất thấp.
1.3.2. Xúc tác
Xúc tác cho phản ứng HDC thường có dạng kim loại mang trên chất mang. Các kết quả nghiên cứu cho thấy Pt, Pd, Ni và Rh có hiệu quả tốt, độ ổn định cao hơn các kim loại khác trong phản ứng HDC ở pha khí. Người ta có thể sử dụng xúc tác đơn kim loại, đa kim loại, hay oxit của các kim loại chuyển tiếp như: ôxit đồng, ôxit côban, ôxit mangan, ôxit sắt, ôxit crôm, ôxit niken.
Về chất mang, γ - Al2O3 và SiO2 là những chất mang có khả năng sử dụng cho xúc tác HDC, tuy nhiên chúng dễ bị tấn công bởi sản phẩm HCl nên bị mất hoạt tính nhanh chóng. Trong khi đó C* có giá thành rẻ, trơ về mặt hóa học, diện tích bề mặt lớn, trở thành một chất mang tiềm năng cho phản ứng HDC pha khí.
a. Kim loại Pd [1]
Pd (palladium) là kim loại quý thuộc nhóm VIII B, chu kì 5, số hiệu nguyên tử 46. Pd kim loại có màu trắng bạc, được phát hiện ra từ năm 1803 bởi William Hyda Wollsaton. Muối nitrat, clorua của Pd tan chậm trong axit.
Pd có nhiều ứng dụng trong nhiều ngành khác nhau:
Trong ngành điện tử: Pd được dùng làm điện dung gốm đa lớp, đầu cảm biến điện tử, hay làm lớp bảo vệ cho cảm biến điện tử và các mối hàn đặc biệt.
Trong công nghệ: Pd dùng trong thiết bị làm sạch khí, thiết bị chế tạo hydro tinh khiết, đó là nhờ Pd có khả năng hấp phụ hydro tốt.
Trong việc làm xúc tác: Pd tán mịn trên C là xúc tác cho quá trình hydro hóa và dehydro hóa, ứng dụng cho phản ứng Cr-acking các sản phẩm dầu mỏ. Ưu điểm của việc sử dụng Pd làm xúc tác là độ chuyển hóa cao, tác dụng nhanh. Tuy nhiên, nó có nhược điểm là giá thành cao, nhanh mất hoạt tính.
Ngoài ra, Pd còn được ứng dụng khác trong các ngành nhiếp ảnh, nghệ thuật…
b. Chất mang C* [1]
C* là một trong những vật liệu hấp phụ tốt, diện tích bề mặt lớn, từ 500 đến 1500 m2/g. Ngoài thành phần chính là cacbon, than hoạt tính còn chứa 5-10% khối lượng các nguyên tố khác ở dạng ôxit kim loại, hydrôxit. Trong thành phần các ôxit kim loại thường chứa các nguyên tố: Al, Si, Fe, Mg, Ca, Na, K, S, P.
Một số đặc trưng của C* là diện tích bề mặt riêng, cấu trúc lỗ xốp, các đặc trưng này liên quan mật thiết đến tính chất hấp phụ của C*.
Diện tích bề mặt riêng là diện tích bề mặt tính cho một đơn vị khối lượng, nó bao gồm tổng diện tích bề mặt trong mao quản và bên ngoài các hạt.
Hình dáng mao quản trên bề mặt C* có thể chia ra làm bốn loại cơ bản: hình trụ, hình khe, hình chai, hình nêm. Phân bố kích thước của các mao quản hay lỗ xốp được xác định theo sự biến đổi của thể tích hay diện tích bề mặt mao quản với kích thước mao quản.
Theo tiêu chuẩn của IUPAC, có thể chia kích thước mao quản thành ba loại: Mao quản lớn có đường kính mao quản trung bình lớn hơn 50 nm, mao quản trung bình có đường kính từ 2 đến 50 nm, mao quản bé có đường kính nhỏ hơn 2 nm.
Trong quá trình hấp phụ, người ta thường đánh giá khả năng hấp phụ của C* thông qua diện tích bề mặt riêng và phân bố lỗ xốp. Diện tích bề mặt riêng càng lớn thì khả năng hấp phụ càng cao. Kích thước mao quản lớn thì dung lượng hấp phụ thấp nhưng tốc độ hấp phụ cao. Các mao quản lớn thường là nơi chứa các hạt xúc tác kim loại sau quá trình ngâm tẩm. Với hệ mao quản trung bình, ngoài hiện tượng hấp phụ có thể xảy ra hiện tượng ngưng tụ mao quản, khi đó kích thước mao quản bị thu hẹp lại. Đối với hệ mao quản nhỏ, dung lượng hấp phụ thường cao nhưng tốc độ hấp phụ chậm.
Ưu điểm của C* khi sử dụng làm chất mang cho xúc tác là tính trơ, rẻ, diện tích bề mặt lớn. Bề mặt lớn của C* có được là nhờ cấu trúc xơ rỗng thừa hưởng từ nguồn gốc hữu cơ và điều kiện hình thành. Ngoài ra, việc xử lý C* sau khi dùng rất đơn giản.
C* có tính chất khử clo, người ta đã đưa ra một thông số độ dày bán hấp phụ khử Clo, đo lường hiệu quả loại bỏ clo của C*. Đó chính là độ dày cần thiết của lớp C* có thể giảm mức clo trong dòng từ 5 pPhần mềm xuống 3.5 ppm. Độ dài này càng bé chứng tỏ hoạt tính của C* càng mạnh.
c. Kim loại thứ hai [1]
Sắt là kim loại chuyển tiếp thuộc nhóm VIII, chu kì 4, số hiệu nguyên tử 26. Fe ứng dụng nhiều nhất trong xây dựng, ngoài ra, Fe được chọn làm xúc tác cho một số quá trình nhờ tính chất ôxy hóa khử.
Niken là kim loại chuyển tiếp thuộc nhóm VIII B, chu kì 4, số hiệu nguyên tử 28. Ni cũng có khả năng khử clo nhưng hoạt tính kém hơn Pd. Tuy vậy, ưu điểm rất lớn của Ni là rẻ và dễ kiếm hơn nhiều so với Pd nên có thể ứng dụng làm xúc tác trên quy mô lớn.
d. Cơ chế phản ứng HDC [6, 7]
Phản ứng HDC được giả thiết xảy ra theo hai cơ chế: nối tiếp và song song. Các phản ứng có thể xảy ra trong quá trình HDC bao gồm:
Trong đó * là biểu thị một phần hoạt động trên bề mặt xúc tác, RClx là hợp chất hữu cơ chứa clo.
Phản ứng (4) và (6) xảy ra trên bề mặt xúc tác, giữa phân tử RClx và nguyên tử H đã hấp phụ trên bề mặt xúc tác. Phản ứng (5),(7) là phản ứng nhả hấp phụ. Phản ứng tổng quát có thể viết như sau:
Có thể dễ dàng nhận thấy: sản phẩm của phản ứng hydrodeclo hóa không chỉ là một chất không chứa clo mà là một hỗn hợp nhiều chất có thể còn chứa clo, nên cơ chế nối tiếp không còn chính xác. Cơ chế song song mô tả phản ứng HDC tốt hơn [7].
Cơ chế phản ứng HDC TTCE với xúc tác đơn kim loại như sau:
Hình 3: cơ chế phản ứng HDC TTCE với xúc tác đơn kim loại Pd [6].
Mô tả cơ chế phản ứng: Đầu tiên, các tâm hoạt tính Pd hấp phụ H2 và chuyển hydro phân tử về dạng hydro nguyên tử. TTCE cũng bị hấp phụ lên các tâm hoạt tính, liên kết C-Cl trong phân tử TTCE bị nguyên tử H và Pd tấn công, hình thành liên kết mới C-H và H-Cl. Sản phẩm phản ứng tách ra khỏi tâm hoạt tính xúc tác và đi ra ngoài.
Có thể thấy vai trò của kim loại Pd vừa là cắt liên kết C – Cl, vừa là tạo ra các hydro nguyên tử (H*) từ H2. Hydro nguyên tử mới sinh ra sẽ thay thế các nguyên từ Cl bị cắt đi, tạo liên kết với Cl còn lại để tạo thành HCl, đồng thời các nguyên tử H cũng
 
Các chủ đề có liên quan khác
Tạo bởi Tiêu đề Blog Lượt trả lời Ngày
D Nghiên cứu tổng hợp pholthua lưỡng kim cấu trúc nano xốp làm chất xúc tác cho quá trình tách nước điện hóa tổng thể Khoa học Tự nhiên 0
D Nghiên cứu chế tạo và khảo sát tính chất quang xúc tác của hệ vật liệu graphitic carbon nitride Khoa học Tự nhiên 0
A Tổng hợp, nghiên cứu đặc trưng cấu trúc của vật liệu Fe-Ti-Hydrotanxit và ứng dụng làm xúc tác xử lý Metylen xanh trong môi trường nước Khoa học Tự nhiên 0
D Nghiên cứu quá trình tổng hợp biodiezel từ dầu dừa trên xúc tác dị thể NaOH/MgO Khoa học Tự nhiên 0
B Nghiên cứu tính chất xúc tác của phức Mn2+ và a xít citric trong phản ứng catalaza Kiến trúc, xây dựng 0
D Nghiên cứu phương pháp tổng hợp xúc tác Co/ZSM-5 ứng dụng cho phản ứng oxy hóa Phenol trong pha lỏng Kiến trúc, xây dựng 0
M Nghiên cứu điều chế một số hệ xúc tác có chứa vanadi cho phản ứng oxi hoá n-Hexan Kiến trúc, xây dựng 2
T Nghiên cứu hoạt tính xúc tác chế tạo phản ứng oxi hóa n-Hexan Kiến trúc, xây dựng 2
D Nghiên cứu các điều kiện xác định Br - Và I - Bằng phương pháp trắc quang động học xúc tác với phản Khoa học Tự nhiên 0
O Nghiên cứu chế tạo xúc tác quang hoá trên cơ sở bán dẫn TIO2 để xử lí các chất ô nhiễm hữu cơ Luận văn Sư phạm 0

Các chủ đề có liên quan khác

Top