Download Luyện thi đại học Toán - Công thức lượng giác miễn phí





Trên mặt phẳng Oxy cho đường tròn lượng giác tâm O bán kính R=1 và điểm M
trên đường tròn lượng giác mà sđ AM=ßvới 02<=ß<= 2pi
Đặt a =ß+ k2pi, k thuộc Z
Ta định nghĩa:
sin a=OK
cos a=OH
tg a = sin a/cos a với cos a khác 0
cota a = cos a/sin a với sin a khác 0



Để tải bản DOC Đầy Đủ thì Trả lời bài viết này, mình sẽ gửi Link download cho

Tóm tắt nội dung:

CHƯƠNG 1: CÔNG THỨC LƯỢNG GIÁC
I. Định nghĩa
Trên mặt phẳng Oxy cho đường tròn lượng giác tâm O bán kính R=1 và điểm M
trên đường tròn lượng giác mà sđ AM = β với 0 2≤ β ≤ π
Đặt k2 ,k Zα = β+ π ∈
Ta định nghĩa:
sin OKα =
cos OHα =
sintg
cos
αα = α với co s 0α ≠
coscot g
sin
αα = α với sin 0α ≠
II. Bảng giá trị lượng giác của một số cung (hay góc) đặc biệt
Góc α
Giá trị
( )o0 0 ( )o306π ( )o454π ( )o603π ( )o902π
sinα 0 1
2
2
2
3
2
1
cosα 1 3
2
2
2
1
2
0
tgα 0 3
3
1 3 ||
cot gα || 3 1 3
3
0
III. Hệ thức cơ bản
2 2sin cos 1α + α =
2
2
11 tg
cos
+ α = α với ( )k k Z2
πα ≠ + π ∈
2
2
1t cot g
sin
+ = α với ( )k k Zα ≠ π ∈
IV. Cung liên kết (Cách nhớ: cos đối, sin bù, tang sai π ; phụ chéo)
a. Đối nhau: và −α α
( )sin sin−α = − α
( )cos cos−α = α
( ) ( )tg tg−α = − α
( ) ( )cot g cot g−α = − α
b. Bù nhau: và α π −α
( )
( )
( )
( )
sin sin
cos cos
tg tg
cot g cot g
π −α = α
π−α = − α
π−α = − α
π−α = − α
c. Sai nhau : và π + π α α
( )
( )
( )
( )
sin sin
cos cos
tg t g
cot g cot g
π+ α = − α
π+α = − α
π+α = α
π+α = α
d. Phụ nhau: và α
2
π −α
sin cos
2
cos sin
2
tg cot g
2
cot g tg
2
π⎛ ⎞− α = α⎜ ⎟⎝ ⎠
π⎛ ⎞− α = α⎜ ⎟⎝ ⎠
π⎛ ⎞− α = α⎜ ⎟⎝ ⎠
π⎛ ⎞− α = α⎜ ⎟⎝ ⎠
e.Sai nhau
2
π
: α và
2
π + α
sin cos
2
cos sin
2
tg cot g
2
cot g tg
2
π⎛ ⎞+ α = α⎜ ⎟⎝ ⎠
π⎛ ⎞+ α = − α⎜ ⎟⎝ ⎠
π⎛ ⎞+ α = − α⎜ ⎟⎝ ⎠
π⎛ ⎞+ α = − α⎜ ⎟⎝ ⎠
f.
( ) ( )
( ) ( )
( )
( )
+ π = − ∈
+ π = − ∈
+ π = ∈
+ π =
k
k
sin x k 1 sin x,k Z
cos x k 1 cosx,k Z
tg x k tgx,k Z
cot g x k cot gx
V. Công thức cộng
( )
( )
( )
sin a b sin acos b sin b cosa
cos a b cosacos b sin asin b
tga tgbtg a b
1 tgatgb
± = ±
± =
±± =
m
m
VI. Công thức nhân đôi
=
= − = − =
= −
−=
2 2 2 2
2
2
sin2a 2sin acosa
cos2a cos a sin a 1 2sin a 2 cos a 1
2tgatg2a
1 tg a
cot g a 1cot g2a
2 cot ga

VII. Công thức nhân ba:
3
3
sin3a 3sina 4sin a
cos3a 4 cos a 3cosa
= −
= −
VIII. Công thức hạ bậc:
( )
( )
2
2
2
1sin a 1 cos2a
2
1cos a 1 cos2a
2
1 cos2atg a
1 cos2a
= −
= +
−= +
IX. Công thức chia đôi
Đặt
at tg
2
= (với a k ) 2≠ π + π
22
2
2
2tsin a
1 t
1 tcosa
1 t
2ttga
1 t
= +
−= +
= −
X. Công thức biến đổi tổng thành tích
( )
( )
a b a bcosa cos b 2cos cos
2 2
a b a bcosa cos b 2sin sin
2 2
a b a bsina sin b 2cos sin
2 2
a b a bsina sin b 2 cos sin
2 2
sin a b
tga tgb
cosacos b
sin b a
cot ga cot gb
sina.sin b
+ −+ =
+ −− = −
+ −+ =
+ −− =
±± =
±± =
XI. Công thức biển đổi tích thành tổng
( ) ( )
( ) ( )
( ) ( )
1cosa.cos b cos a b cos a b
2
1sina.sin b cos a b cos a b
2
1sina.cos b sin a b sin a b
2
= ⎡ + + − ⎤⎣ ⎦
−= ⎡ + − −⎣ ⎦
= ⎡ + + − ⎤⎣ ⎦

Bài 1: Chứng minh
4 4
6 6
sin a cos a 1 2
sin a cos a 1 3
+ − =+ −
Ta có:
( )24 4 2 2 2 2 2sin a cos a 1 sin a cos a 2sin acos a 1 2sin acos a+ − = + − − = − 2
Và: ( )( )
( )
6 6 2 2 4 2 2 4
4 4 2 2
2 2 2 2
2 2
sin a cos a 1 sin a cos a sin a sin acos a cos a 1
sin a cos a sin acos a 1
1 2sin acos a sin acos a 1
3sin acos a
+ − = + − +
= + − −
= − − −
= −

Do đó:
4 4 2 2
6 6 2 2
sin a cos a 1 2sin acos a 2
sin a cos a 1 3sin acos a 3
+ − −= =+ − −
Bài 2: Rút gọn biểu thức ( )221 cosx1 cosxA 1sin x sin x
⎡ ⎤−+= = +⎢ ⎥⎢ ⎥⎣ ⎦
Tính giá trị A nếu
1cosx
2
= − và x
2
π < < π
Ta có:
2 2
2
1 cosx sin x 1 2 cosx cos xA
sin x sin x
⎛ ⎞+ + − += ⎜ ⎟⎝ ⎠
( )
2
2 1 cosx1 cosxA .
sin x sin x
−+⇔ =
( )2 2
3 3
2 1 cos x 2sin x 2A
sin x sin x sin x
−⇔ = = = (với sin x 0≠ )
Ta có: 2 2
1 3sin x 1 cos x 1
4 4
= − = − =
Do: x
2
π
Vậy
3sin x
2
=
Do đó
2 4 4A
sin x 33
= = = 3
Bài 3: Chứng minh các biểu thức sau đây không phụ thuộc x:
a. 4 4 2 2A 2cos x sin x sin x cos x 3sin x= − + + 2
b.
2 cot gxB
tgx 1 cot gx 1
+= +− −
1
a. Ta có:
4 4 2 2A 2cos x sin x sin x cos x 3sin x= − + + 2
( ) ( ) ( )
( )
24 2 2 2 2
4 2 4 2 4
A 2 cos x 1 cos x 1 cos x cos x 3 1 cos x
A 2 cos x 1 2 cos x cos x cos x cos x 3 3cos x
⇔ = − − + − + −
⇔ = − − + + − + − 2
A 2⇔ = (không phụ thuộc x)
b. Với điều kiện sin x.cosx 0,tgx 1≠ ≠
Ta có:
2 cot gxB
tgx 1 cot gx 1
1+= +− −
1 1
2 2 1 tgxtgxB 1tgx 1 tgx 1 1 tgx1
tgx
+ +⇔ = + = +− −− −
( )2 1 tgx 1 tgxB 1
tgx 1 tgx 1
− − −⇔ = = = −− − (không phụ thuộc vào x)
Bài 4: Chứng minh
( )2 2 2 2 2
2 2 2
1 cosa1 cosa cos b sin c1 cot g bcot g c cot ga 1
2sina sin a sin bsin c
⎡ ⎤−+ −− + − =⎢ ⎥⎢ ⎥⎣ ⎦

Ta có:
*
2 2
2 2
2 2
cos b sin c cot g b.cot g c
sin b.sin c
− −
2
2 2
2 2
cotg b 1 cot g b cot g c
sin c sin b
= − −
( ) ( )2 2 2 2 2cot g b 1 cot g c 1 cot g b cot g b cot g c= + − + − 1= − (1)
*
( )2
2
1 cosa1 cosa 1
2sin a sin a
⎡ ⎤−+ −⎢ ⎥⎢ ⎥⎣ ⎦
( )2
2
1 cosa1 cosa 1
2sin a 1 cos a
⎡ ⎤−+= −⎢ ⎥−⎢ ⎥⎣ ⎦
1 cosa 1 cosa1
2sin a 1 cosa
+ −⎡ ⎤= −⎢ ⎥+⎣ ⎦
1 cosa 2 cosa. cot ga
2sin a 1 cosa
+= =+ (2)
Lấy (1) + (2) ta được điều phải chứng minh xong.
Bài 5: Cho tùy ý với ba góc đều là nhọn. ABCΔ
Tìm giá trị nhỏ nhất của P tgA.tgB.tgC=
Ta có: A B C+ = π −
Nên: ( )tg A B tgC+ = −
tgA tgB tgC
1 tgA.tgB
+⇔ =− −
tgA tgB tgC tgA.tgB.tgC⇔ + = − +
Vậy: P tgA.tgB.tgC tgA tgB tgC= = + +
Áp dụng bất đẳng thức Cauchy cho ba số dương tgA,tgB,tgC ta được
3tgA tgB tgC 3 tgA.tgB.tgC+ + ≥
3P 3 P⇔ ≥
3 2P 3
P 3 3
⇔ ≥
⇔ ≥
Dấu “=” xảy ra
= =⎧ π⎪⇔ ⇔ =⎨ π< <⎪⎩
tgA tgB tgC
A B C
30 A,B,C
2
= =
Do đó: MinP 3 3 A B C
3
π= ⇔ = = =
Bài 6 : Tìm giá trị lớn nhất và nhỏ nhất của
a/ 8 4y 2sin x cos 2x= +
b/ 4y sin x cos= − x
a/ Ta có :
4
41 cos2xy 2 cos 2x
2
−⎛ ⎞= +⎜ ⎟⎝ ⎠
Đặt với thì t cos2x= 1 t 1− ≤ ≤
( )4 41y 1 t
8
= − + t
=> ( )3 31y ' 1 t 4t
2
= − − +
Ta có : Ù ( ) y ' 0= 3 31 t 8t− =
⇔ 1 t 2t− =
⇔ 1t
3
=
Ta có y(1) = 1; y(-1) = 3;
1 1y
3 2
⎛ ⎞ =⎜ ⎟⎝ ⎠ 7
Do đó :

=
x
y 3Max và

=
x
1yMin 27
b/ Do điều kiện : sin và co nên miền xác định x 0≥ s x 0≥
π⎡ ⎤= π + π⎢ ⎥⎣ ⎦D k2 , k22 với ∈ k
Đặt t cos= x x với thì 0 t 1≤ ≤ 4 2 2t cos x 1 sin= = −
Nên 4sin x 1 t= −
Vậy 8 4y 1 t= − − t trên [ ]D' 0,1=
Thì ( )
−= − <

3
748
ty ' 1 0
2. 1 t
[ )t 0; 1∀ ∈
Nên y giảm trên [ 0, 1 ]. Vậy : ( )∈ = =x Dmax y y 0 1, ( )∈ = = −x Dmin y y 1 1
Bài 7: Cho hàm số 4 4y sin x cos x 2msin x cos= + − x
Tìm giá trị m để y xác định với mọi x
Xét 4 4f (x) sin x cos x 2msin x cos x= + −
( ) ( )22 2 2f x sin x cos x msin 2x 2sin x cos x= + − − 2
( ) 21f x 1 sin 2x msin2x
2
= − −
Đặt : với t sin 2x= [ ]t 1,∈ − 1
y xác định ⇔ x∀ ( )f x 0 x R≥ ∀ ∈
⇔ 211 t mt 0
2
− − ≥ [ ]t 1,1−∀ ∈
⇔ ( ) 2g t t 2mt 2 0= + − ≤ [ ]t 1,∀ ∈ − 1
t
Do nên g(t) có 2 nghiệm phân biệt t1, t2 2' m 2 0Δ = + > m∀
Lúc đó t t1 t2
g(t) + 0 - 0
Do đó : yêu cầu bài toán ⇔ 1 2t 1 1≤ − < ≤
⇔ ⇔ ( )( )
1g 1 0
1g 1 0
− ≤⎧⎪⎨ ≤⎪⎩
2m 1 0
2m 1 0
− − ≤⎧⎨ − ≤⎩

1m
2
1m
2
−⎧ ≥⎪⎪⎨⎪ ≤⎪⎩
⇔ 1 1m
2 2
− ≤ ≤
Cách khác :
g t ( ) 2t 2mt 2 0= + − ≤ [ ]t 1,1−∀ ∈
{ }
[ , ]
max ( ) max ( ), ( )
t
g t g g
∈ −
⇔ ≤ ⇔ − ≤
11
0 1 1 0
{ }max ), )m m⇔ − − − + ≤2 1 2 1 0⇔
1m
2
1m
2
−⎧ ≥⎪⎪⎨ ⎪ ≤⎪⎩
m⇔− ≤ ≤1 1
2 2
Bài 8 : Chứng minh 4 4 4 43 5 7A sin sin sin sin
16 16 16 16 2
π π π π= + + + 3=
Ta có : 7sin sin cos
16 2 16 16
π π π π⎛ ⎞= − =⎜ ⎟⎝ ⎠
π π π⎛ ⎞= − =⎜ ⎟⎝ ⎠
5 5sin cos cos
16 2 16 16
π3
Mặt khác : ( )24 4 2 2 2 2cos sin cos 2sin cosα + α = α + α − α αsin
2 21 2sin cos= ...
 

Các chủ đề có liên quan khác

Top