phamcong_caca23

New Member
Download miễn phí Bài giảng Truyền sóng và anten



Nguyên lý Huyghen, miền Fresnel (tia trực tiếp)
Miền Fresnel
Chứng minh được rằng: Cường độ trường tại điểm thu chủ yếu được gây ra bởi vùng không gian nằm trong khoảng một nửa miền Fresnel thứ nhất (0,6b1). Tổng cường độ trường do các điểm nằm ngoài miền này gây ra tại điểm thu sẽ bù trừ cho nhau và triệt tiêu do pha của chúng ngược nhau. Đây là giới hạn của vùng truyền sóng trong phạm vi nhìn thấy trực tiếp
Ý nghĩa
Quá trình truyền sóng vô tuyến giữa hai anten thu và phát không phải chỉ theo một tia, cũng không phải do toàn bộ miền không gian mà chỉ là vùng không gian có dạng elip tròn xoay nằm trong khoảng một nửa miền Fresnel thứ nhất
Quá trình truyền sóng vô tuyến cơ bản tồn tại khi vùng không gian giới hạn bởi 0,6 b1 không bị cản trở suốt dọc đường truyền
Để quá trình phát và thu sóng vô tuyến đạt hiệu quả cao, ta dùng các biện pháp kỹ thuật để sóng điện từ bức xạ ra chỉ tập chung trong miền Fresnel thứ nhất  sử dụng anten có hướng (anten parabol)
: Là mặt phẳng chứa vec tơ E và phương truyền lan sóng (vecto Z) 1.2 Tính chất cơ bản của SĐT 1.2 Tính chất cơ bản của SĐT Phân loại Phân cực đường thẳng: Mặt phẳng phân cực cố định khi sóng truyền lan Phân cực đứng: Vecto E vuông góc với mặt phẳng nằm ngang Phân cực ngang: Vecto E song song với mặt phẳng nằm ngang Phân cực quay: Mặt phẳng phân cực quay xung quanh trục của phương truyền lan Phân vực tròn: Khi vecto E quay, biên độ không thay đổi (vẽ lên đường tròn) Phân cực elip: Khi vecto E quay, biên độ thay đổi liên tục vẽ lên đường elip Quay phải: Quay thuận chiều kim đồng hồ Quay trái: Quay ngược chiều kim đồng hồ Phân cực sóng 1.2 Tính chất cơ bản của SĐT Hình 1.4. Các dạng phân cực sóng Phân chia sóng điện từ Dựa vào tính chất vật lý, đặc điểm truyền lan: Chia thành các băng sóng 1.3 Phân loại sóng điện từ Hình 1.5. Các băng sóng Phân chia sóng điện từ Dựa vào tính chất vật lý, đặc điểm truyền lan: Chia thành các băng sóng 1.3 Phân loại sóng điện từ Bảng 1.1. Các băng sóng Phân chia sóng điện từ Tính chất quang học Sóng ánh sáng cũng là sóng điện từ, ở băng tần thị giác cảm nhận được, khi nghiên cứu sóng điện từ thường sử dụng sóng ánh sáng cho trực quan Các tính chất quang của sóng ánh sáng cũng đúng cho sóng điện từ Truyền thẳng Phản xạ, khúc xạ … Ứng dụng các băng sóng LF, MF: Phát thanh điều biên nội địa, thông tin hàng hải HF: Phát thanh điều biên cự ly xa VHF, UHF: Phát thanh điều tần (66 – 108 MHz), truyền hình, viba số băng hẹp, hệ thống thông tin di động mặt đất SHF: Viba số băng rộng, thông tin vệ tinh EHF: Thông tin vũ trụ 1.3 Phân loại sóng điện từ Bầu khí quyển 1.4 cách truyền lan sóng điện từ Hình 1.6. Phân tầng bầu khí quyển Sóng đất Nguyên lý Bề mặt trái đất là môi trường dẫn khép kín đường sức điện trường Nguồn bức xạ nằm thẳng đứng trên mặt đất, sóng điện từ truyền lan dọc theo mặt đất đến điểm thu Đặc điểm Năng lượng sóng bị hấp thụ ít đối với tần số thấp, đặc biệt với mặt đất ẩm, mặt biển (độ dẫn lớn) Khả năng nhiễu xạ mạnh, cho phép truyền lan qua các vật chắn Sử dụng cho băng sóng dài và trung với phân cực đứng 1.4 cách truyền lan sóng điện từ Hình 1.7: Quá trình truyền lan sóng đất (sóng bề mặt) Sóng không gian Nguyên lý Anten đặt cao trên mặt đất ít nhất vài bước sóng Sóng điện từ đến điểm thu theo 2 cách Sóng trực tiếp: Đi thẳng từ điểm phát đến điểm thu Sóng phản xạ: Đến điểm thu sau khi phản xạ trên mặt đất (thỏa mãn ĐL PX) Đặc điểm Chịu ảnh hưởng nhiều của điều kiện môi trường Phù hợp cho băng sóng cực ngắn, là cách truyền sóng chính trong thông tin vô tuyến 1.4 cách truyền lan sóng điện từ Hình 1.8: Truyền lan sóng không gian Sóng tầng điện ly (sóng trời) Nguyên lý Lợi dụng đặc tính phản xạ sóng của tầng điện ly với các băng sóng ngắn Sóng điện từ phản xạ sẽ quay trở về trái đất Đặc điểm Không ổn định do sự thay đổi điều kiện phản xạ của tầng điện ly 1.4 cách truyền lan sóng điện từ Hình 1.9: Truyền lan sóng tầng điện ly Sóng tự do (sóng thẳng) Nguyên lý Môi trường truyền sóng lý tưởng (đồng tính, đẳng hướng, không hấp thụ) Sóng truyền lan trực tiếp đến điểm thu theo một đường thẳng Đặc điểm Môi trường chỉ tồn tại trong vũ trụ, sử dụng cho thông tin vũ trụ Bầu khí quyển trái đất trong một số điều kiện nhất định được coi là không gian tự do 1.4 cách truyền lan sóng điện từ Hình 1.10: Truyền lan sóng tự do Tổng kết: 1.4 cách truyền lan sóng điện từ Hình 1.11: Các cách truyền lan sóng vô tuyến Mật độ công suất, cường độ điện trường Bài toán Không gian tự do Nguồn bức xạ vô hướng, công suất bức xạ P1 (W), đặt tại điểm T Xét trường tại điểm R cách T một khoảng r (m) Giải quyết Nguồn bức xạ sẽ bức xạ vô số mặt sóng cầu liên tiếp có tâm tại T Xét mặt cầu đi qua R có bán kính là r. Thông lượng năng lượng (mật độ công suất) tại mặt cầu: 1.5 Biểu thức truyền lan sóng trong không gian tự do (1.8) Mật độ công suất, cường độ điện trường Theo lý thuyết trường Cường độ điện trường tại điểm thu 1.5 Biểu thức truyền lan sóng trong không gian tự do (1.9) Eh, Hh: Cường độ điện trường, từ trường hiệu dụng Z0: Trở kháng sóng của không gian tự do (1.10) Mật độ công suất, cường độ điện trường Sử dụng anten có hướng Tập chung năng lượng giúp tăng công suất tại điểm thu Đặc trưng bởi hệ số tính hướng D1 1.5 Biểu thức truyền lan sóng trong không gian tự do (1.11) Hình1.13: Nguồn bức xạ có hướng Công suất bức xạ đẳng hướng tương đương (Equivalent Isotropic Radiated Power - EIRP) “G(dBi) = 10 log G nên độ lợi G = 10 ^ ( G(dBi)/10 )” Là công suất bức xạ tương đương của một anten vô hướng để có thể đạt được cường độ trường tại điểm thu bằng với khi dùng anten có hướng 1.5 Biểu thức truyền lan sóng trong không gian tự do G1: Hệ số tăng ích anten phát (GT) 1: Hiệu suất anten phát (T) P1: Công suất bức xạ anten phát (P) Pa1: Công suất đưa vào anten phát (PT) (1.12) (1.13) Công suất nhận được trên anten thu, P2 Là tích giữa mật độ công suất tại điểm thu, S2 và diện tích làm việc của anten thu, A Trường hợp sử dụng anten gương parabol tròn xoay với hệ số tính hướng D2 Công suất thực tế đầu ra anten thu 1.5 Biểu thức truyền lan sóng trong không gian tự do Ah: Diện tích hiệu dụng của anten thu 2: Hiệu suất anten thu (1.15) (1.16) (1.14) d: Đường kính miệng anten : Bước sóng công tác Tổn hao truyền sóng, L Xác định bằng tỉ số giữa công suất bức xạ của máy phát với công suất anten thu nhận được Tổn hao truyền sóng trong không gian tự do gây ra bởi sự khuếch tán tất yếu của sóng theo mọi phương, công suất thu được chỉ là một phần nhỏ. Tổn hao này gọi là Tổn hao không gian tự do, Ltd Trường hợp sử dụng anten vô hướng, gọi là tổn hao cơ bản trong không gian tự do, L0 1.5 Biểu thức truyền lan sóng trong không gian tự do (1.17) (1.19) (1.18) (1.20) Hệ số suy giảm, F Môi trường thực tế có nhiều yếu tố ảnh hưởng tới quá trình truyền sóng, ảnh hưởng tới công suất thu Các ảnh hưởng của môi trường thực lên quá trình truyền sóng được biểu diễn qua hệ số suy giảm: F Trong môi trường thực 1.6 Hệ số suy giảm (1.24) (1.23) (1.22) (1.21) Bài tập chương 1 1.7 Câu hỏi và bài tập Bài tập chương 1 1.7 Câu hỏi và bài tập Bài tập chương 1 1.7 Câu hỏi và bài tập TRUYỀN LAN SÓNG CỰC NGẮN CHƯƠNG 2 Nội dung chương 2: (5) 2.1 Tổng Quát 2.2 Truyền lan trong giới hạn nhìn thấy trực tiếp với điều kiện lý tưởng 2.3 Ảnh hưởng của độ cong trái đất 2.4 Ảnh hưởng của địa hình 2.5 Ảnh hưởng của tầng đối lưu 2.6 Câu hỏi và bài tập NỘI DUNG Đặc điểm truyền lan sóng cực ngắn Bước sóng từ 1mm đến 10m (30MHz – 300GHz): Là sóng siêu cao tần (RF – Radio Frequency) Phương pháp truyền Tần số cao nên không thể phản xạ trong tầng điện ly (đi xuyên qua) Bước sóng ngắn nên khả năng nhiễu xạ kém, bị hấp thụ mạnh bởi mặt đất Phương pháp truyền sóng không gian: Là phù hợp nhất Tán xạ tầng đối lưu Siêu khúc xạ tầng đối lưu Truyền lan trong giới hạn ...

Link Download bản DOC
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:



xem thêm
Bài giảng Truyền sóng & anten
 
Top