heoconnhuquynh

New Member

Download miễn phí Chuyên đề Ứng dụng của đạo hàm tính đơn điệu của hàm so





ỨNG DỤNG TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ ĐỂ
CHỨNG MINH BẤT ĐẲNG THỨC
GIẢI PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH - HỆ BẤT PHƯƠNG TRÌNH
Cơ sở để giải quyết vấn đề này là dùng đạo hàm để xét tính đơn điệu của hàm số và dựa vào
chiều biến thiên của hàm số để kết luận về nghiệm của phương trình , bất phương trình, hệ phương trình .
CÁC KIẾN THỨC CƠ BẢN
I. Định nghĩa: Cho hàm số y = f(x) xác định trong khoảng (a,b).
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

Chuyên đề 11: ỨNG DỤNG CỦA ĐẠO HÀM
TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ
Tóm tắt giáo khoa
Định nghĩa y f )(x: Cho hàm số =
[ ]
xác định trên khoảng (a;b)
[ ])2()1(21:);(2,1 f xfxfxxbaxx <⇒<∈∀⇔đnb)(a; trên (tăng) biếnđồng

• [ ] [ ])2()1(21:);(2,1 f xfxfxxbaxx >⇒<∈∀⇔đnb)(a; trên (giảm) biếnnghịch
69
x
y
x
y
1x 2x
)( 1xf
)( 2xf
a bO
)(f
(f
2x
)1x
a b1x 2x
):))( xfyC =
1. Điều kiện cần của tính đơn điệu:
Định lý 1: Giả sử hàm số f có đạo hàm trên khoảng (a;b)
• [ ] ⎥⎦⎤⎢⎣⎡ ∈∀≥⇒ b)(a;x 'f b)(a; khoảngtrên (tăng) biếnđồng f 0)(x
• [ ] ⎥⎦⎤⎢⎣⎡ ∈∀≤⇒ b)(a;x 0)('f xb)(a; khoảngtrên (giảm) biếnnghịch f
2. Điều kiện đủ của tính đơn điệu:
Định lý 2: Giả sử hàm số f có đạo hàm trên khoảng (a;b) [ ]b)(a; trên (tăng) biếnđồngb)(a;x 0(x)'f f ⇒∈∀> ⎥⎦⎤⎢⎣⎡ •
• [ ]b)(a; trên (giảm) biếnnghịchb)(a;x 0(x)'f f ⇒∈∀< ⎥⎦⎤⎢⎣⎡
• [ ]b)(a; trên đổi khôngb)(a;x 0(x)'f f ⇒∈∀= ⎥⎦⎤⎢⎣⎡
x a b
)(' xf
)(xf
+ x a b)(' xf
)(xf

Định lý 3: Giả sử hàm số f có đạo hàm trên khoảng (a;b)
[ ]b)(a; trên (tăng) biếnđồng
b)(a; của điểm hạnhữu
sốmột tại raxảy chỉ thức đẳng
b)(a;x 0(x)'f
f ⇒
∈∀≥
⎥⎥
⎥⎥



⎢⎢
⎢⎢



[ ]b)(a; trên (giảm) biếnnghịch
b)(a; của điểm hạnhữu
sốmột tại raxảy chỉ thức đẳng
b)(a;x 0(x)'f
f ⇒
∈∀≤
⎥⎥
⎥⎥



⎢⎢
⎢⎢



Minh họa định lý:
Định lý 4
70
: Giả sử hàm số f có đạo hàm trên khoảng (a;b)
• [ ] f ⎥⎦⎤⎢⎣⎡ ∈∀≥⇔ b)(a;x 0(x)'fb)(a; trên (tăng) biếnđồng
• [ ] ⎥⎦⎤⎢⎣⎡ ∈∀≤⇔ b)(a;x 0(x)'fb)(a; trên (giảm) biếnnghịch f
• [ ] ⎥⎦⎤⎢⎣⎡ ∈∀=⇔ b)(a;x 0(x)'fb)(a; trên đổi không f
x a b
)(' xf
)(xf
+
0x
0 +
x a b
)(' xf
)(xf

0x
0 −
3. Phương pháp xét chiều biến thiên của hàm số:
y f )(x= ta có thể thực hiện như sau: Muốn xét chiều biến thiên của hàm số
Bước 1: Tìm miền xác định của hàm số : D=?
Bước 2: Tính và xét dấu )(' xf )(' xf
Bước 3: Dựa vào định lý điều kiện đủ để kết luận.
BÀI TẬP RÈN LUYỆN
Bài 1: Khảo sát sự biến thiên của hàm số:
1) xxy −= 4 2)
12
3
+
+=
x
xy 3)
12
2

=
x
xy
4) 5) xxey +−= 2
x
xey = 6) xxy ln2
2
1 −=
7)
x
xy
ln
= 8) xxy −+−= 42 9) 22 xxy −+=
Bài 2: Cho hàm số 23)12(223
3
1)( +−+++−== axaxxxfy (1). Tìm a để hàm số nghịch biến trên R
Bài 3: Tìm m để hàm số 4)3(2)1(3
3
1 −++−+−= xmxmxy đồng biến trên khoảng (0;3)
Bài 4: Cho hàm số
3
2
)32(2)1(3
3
1
)( −−+−+== xmxmxxfy (1)
a) Với giá trị nào của m, hàm số (1) đồng biến trên R
b) Với giá trị nào của m, hàm số (1) đồng biến trên khoảng (1;+∞)
Bài 5: Cho hàm số
1
2)(

++==
x
m
xxfy (1)
Tìm a để hàm số (1) đồng biến trên mỗi khoảng xác định của nó
Bài 6: Cho hàm số
1
13)2(22
)(

+−++−==
x
mxmx
xfy (1)
Tìm a để hàm số (1) nghịch biến trên mỗi khoảng xác định của nó
Bài 7: Cho hàm số :
mx
mxmxy −
++−+−= 1)1(2
2
. Định m để hàm số đồng biến trong khoảng (1;+∞ )
Bài 8: Chứng minh rằng: với mọi xtgxx 3sin2 >+ ⎟⎠
⎞⎜⎝
⎛∈
2
;0 πx
Bài 9: Chứng minh rằng:
3
3x
xtgx +> với mọi ⎟⎠
⎞⎜⎝
⎛∈
2
;0 πx
Bài 10: Chứng minh rằng: xtgx π
4≤ với mọi ⎥⎦
⎤⎢⎣
⎡∈
4
;0
π
x
Bài 11: Cho hàm số 3 21 (2 1) 2
3
y x ax a x a= − + − − +
Tìm a để hàm số nghịch biến trong khoảng (-2;0)
Bài 12: Cho hàm số (1) 123 ++−= xmxxy
Tìm các giá trị của m để hàm số (1) nghịch biến trong khoảng (1;2)
Bài 13: Cho hàm số
2 1
1
x mxy
x
+ −= −
Tìm m để hàm số đồng biến trên khoảng (-∞ ;1) và (1;+∞ ).
Bài 14: Cho hàm số
2 2
2
x x my
x
− += −
Xác định m để hàm số nghịch biến trên [-1;0].
Bài 15: Cho hàm số
2 25 6
3
x x my
x
+ + += +
Tìm m để hàm số đồng biến trên khoảng (1;+∞ ).
Bài 16: Cho hàm số
2 (2 3) 1
( 1)
x m x my
x m
+ − + −= − −
Tìm m để hàm số đồng biến trên khoảng (0;+∞ )
71
ỨNG DỤNG TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ ĐỂ
CHỨNG MINH BẤT ĐẲNG THỨC
GIẢI PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH - HỆ BẤT PHƯƠNG TRÌNH
********
Cơ sở để giải quyết vấn đề này là dùng đạo hàm để xét tính đơn điệu của hàm số và dựa vào
chiều biến thiên của hàm số để kết luận về nghiệm của phương trình , bất phương trình, hệ phương trình .
CÁC KIẾN THỨC CƠ BẢN
----------
I. Định nghĩa : Cho hàm số y = f(x) xác định trong khoảng (a,b).
a) f tăng ( hay đồng biến ) trên khoảng (a,b) ⇔ ∀ x1, x2 ∈ (a,b) : x1 < x2 ⇒ f(x1) < f(x2)
b) f giảm ( hay nghịch biến ) trên khoảng (a,b) ⇔ ∀ x1, x2 ∈ (a,b) : x1 f(x2)
II. Các tính chất :
1) Tính chất 1: Giả sử hàm số y = f(x) tăng (hay giảm) trên khoảng (a,b) ta có :
f(u) = f(v) u = v (với u, v ⇔ ∈ (a,b) )
72
2) Tính chất 2: Giả sử hàm số y = f(x) tăng trên khoảng (a,b) ta có :
f(u) < f(v) u < v (với u, v ⇔ ∈ (a,b) )
3) Tính chất 3: Giả sử hàm số y = f(x) giảm trên khoảng (a,b) ta có :
f(u) v (với u, v ⇔ ∈ (a,b) )
4) Tính chất 4:
Nếu y = f(x) tăng trên (a,b) và y = g(x) là hàm hằng hay là một hàm số giảm
trên (a,b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm thuộc khỏang (a,b)
*Dựa vào tính chất trên ta suy ra :
Nếu có x0 ∈ (a,b) sao cho f(x0) = g(x0) thì phương trình f(x) = g(x) có nghiệm duy nhất trên (a,b)
BÀI TẬP ÁP DỤNG
Bài 1 : Giải các phương trình sau :
1) 11x41x4 2 =−+−
2) xxx 2)32()32( =++−
3) xlog)x1(log 7
3
2 =+
Bài 2 : Giải các phương trình sau:
1) 2xx1x )1x(22
2 −=− −−
2) 2x3x)
5x4x2
3xx(log 2
2
2
3 ++=++
++
Bài 3 : Giải các hệ :
1) với x, y ⎩⎨

π=+
−=−
2y8x5
yxgycotgxcot ∈ (0,π)
2) ⎪⎩
⎪⎨

=+
+−=−
2yx
)2xy).(xy(22
22
yx
Bài 4: Giải các bất phương trình sau.
1) 5x + 12x > 13x
2) x (x8 + x2 +16 ) > 6 ( 4 - x2 )
Bài 5 : Chứng minh các bất đẳng thức sau :
1) ex > 1+x với x > 0
2) ln (1 + x ) 0
3) sinx 0
4) 1 -
2
1 x2 < cosx với x 0 ≠
------Hết-------
73
CỰC TRỊ CỦA HÀM SỐ
Tóm tắt giáo khoa
I. Định nghĩa: Cho hàm số y=f(x) xác định trên khoảng (a;b) và x0∈(a;b)
74
x
y
( )a b0xO
)( 0xf
)(xf
):))( xfyC =
x ( )
x
y
O
a b0xx
)(xf
)( 0xf
):))( xfyC =

⎥⎦
⎤⎢⎣

⎭⎬

⎩⎨
⎧⎥⎦
⎤⎢⎣
⎡ ∈∀<⇔ 0x\Vx )0f(xf(x) 0x
đn
f số hàmcủa ĐẠICỰC điểmlà

⎥⎦
⎤⎢⎣

⎭⎬

⎩⎨
⎧⎥⎦
⎤⎢⎣
⎡ ∈∀>⇔ 0x\Vx )0f(xf(x)
n
0x
đ
f số hàmcủa TIỂU CỰC điểmlà
II.Điều kiện cần của cực trị:
Định lý Fermat : Giả sử y=f(x) liên tục trên khoảng (a;b) và );(0 bax ∈
⎥⎦
⎤⎢⎣

⎥⎥



⎢⎢


⎡ =⇒ 0)0('f x
0x tại trị cựcđạt f
0x tại hàmđạo có f
Ý nghĩa hình học của định lý:
Nếu hàm số ( )y f x= có đạo hàm tại điểm x0 và đạt cực trị tại điểm đó thì tiếp tuyến của đường cong
(C): ( )y f x= tại điểm M(x0,f(x0)) phải cùng phương với Ox
III. Điều kiện đủ để hàm số có cưcï trị:
1) Định lý 1: Giả sử hàm số y=f(x) có đạo hàm trên một lân cận của điểm x0 ( có thể trừ
tại điểm x0)

⎥⎦
⎤⎢⎣

⎥⎥



⎢⎢




+ 0
x tại ĐẠICỰCđạt f
- sang từ dấu đổi'f
mà0x qua đi x khiNếu
)(
x

⎥⎦
⎤⎢⎣

⎥⎥



⎢⎢




+− 0
x tại TIỂU CỰCđạt f
sang từ dấu đổi'f
mà0x qua đi x khiNếu
)(
x
Bảng t...
 
Các chủ đề có liên quan khác

Các chủ đề có liên quan khác

Top