bebong_mimi

New Member

Download miễn phí Thí nghiệm Phân tích thực phẩm





Muốn thực hiện được phép đo phổ hấp thu nguyên tử người ta cần có một nguồn phát tia bức xạ đơn sắc (tia phát xạ cộng hưởng) của nguyên tố cần phân tích để chiếu qua môi trường hấp thu. Nguồn phát tia bức xạ đơn sắc trong phép đo phổ hấp thu nguyên tử thường là các đèn canh rỗng (HCL), các đèn phóng điện không điện cực (EDL) và các đèn phổ liên tục có biến điệu (đã được đơn sắc hóa). Nhưng dù là loại nào, nguồn phát tia bức xạ đơn sắc trong phép đo phổ AAS cũng phải thỏa mãn được những yêu cầu tối thiểu sau đây mới có thể chấp nhận được:
 Nguồn phát tia bức xạ đơn sắc phải tạo ra được các tia phát xạ nhạy (các vạch phát xạ nhạy, đặc trưng) của nguyên tố cần phân tích. Chùm tia phát xạ đó phải có cường độ ổn định, phải lặp lại được trong nhiều lần đo khác nhau trong cùng điều kiện, phải điều chỉnh được với cường độ mong muốn cho mỗi phép đo.
 Nguồn phát tia bức xạ phải cung cấp được một chùm tia phát xạ thuần khiết chỉ bao gồm một số vạch nhạy đặc trưng của nguyên tố phân tích. Phổ nền của nó phải không đáng kể. Có như thế mới hạn chế được những ảnh hưởng về vật lí và về phổ cho phép đo AAS.
 Chùm tia phát xạ đơn sắc do nguồn đó cung cấp phải có cường độ cao, nhưng lại phải bền vừng theo thời gian và phải không bị các yếu tố vật lí khác nhiễu loạn, ít bị ảnh hưởng bởi các dao động của điều kiện làm việc.
 Nguồn phát tia bức xạ đơn sắc phải bền lâu, không quá đắt tiền và không quá phức tạp cho người sử dụng.
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

g hấp thu bức xạ đơn sắc để tạo ra phổ hấp thu nguyên tử. Vì thế ngọn lửa đèn khí muốn dùng vào mục đích để hóa hơi và nguyên tử hóa mẫu phân tích cần thoả mãn một số yêu cầu nhất định sau đây:
Ngọn lửa đèn khí phải làm nóng đều được mẫu phân tích, hóa hơi và nguyên tử hóa mẫu phân tích với hiệu suất cao, để bảo đảm cho phép phân tích đạt độ chính xác và độ nhạy cao.
Năng lượng (nhiệt độ) của ngọn lửa phải đủ lớn và có thể điều chỉnh được tùy theo từng mục đích phân tích mỗi nguyên tố. Đồng thời lại phải ổn định theo thời gian và có thể lặp lại được trong các lần phân tích khác nhau để đảm bảo cho phép phân tích đạt kết quả đúng đắn. Yêu cầu này có lúc không được thỏa mãn, vì nhiệt độ cao nhất của ngọn lửa cũng chỉ đến 3300oC. Do đó với những nguyên tố tạo thành hợp chất bền nhiệt thì hiệu suất nguyên tử hóa của ngọn lửa là kém.
Yêu cầu thứ ba là ngọn lửa phải thuần khiết, nghĩa là không sinh ra các vạch phổ phụ làm khó khăn cho phép đo hay tạo ra phổ nền quá lớn quấy rối phép đo. Quá trình Ion hóa và phát xạ phải không đáng kể vì quá trình này làm mất các nguyên tử tự do tạo ra phổ hấp thu nguyên tử.
Một yêu cầu nữa là ngọn lửa phải có bề dày đủ lớn để có được lớp hấp thu đủ dầy làm tăng độ nhạy của phép đo. Đồng thời bề dày của lớp hấp thu lại có thể thay đổi được khi cần thiết, để đo ở nồng độ lớn. Trong các máy hiện nay, bề dày này có thể thay đổi được từ 2 – 10 cm.
Tiêu tốn ít mẫu phân tích.
Để tạo ra ngọn lửa, người ta có thể đốt cháy nhiều hỗn hợp khí khác nhau, bao gồm một khí oxy hóa và một khí cháy, trong các đèn khí thích hợp. Nhưng với những yêu cầu đã nói trên thì chỉ có một vài loại đèn khí là tạo ra được ngọn lửa tương đối phù hợp cho phép đo phổ hấp thu nguyên tử. Đó là những môi trường nguyên tử hóa mẫu tương đối bền vững và kinh tế (bảng 2). Đặc biệt được ứng dụng nhiều nhất trong phép đo AAS là ngọn lửa của đèn khí được đốt bằng hỗn hợp khí: (axetylen và không khí nén) hay ngọn lửa của đèn khí (N2O và axetylen), hay (hydro và axetylen).
Bảng 2a và 2b là một số ví dụ về nhiệt độ của ngọn lửa một số đèn khí được dùng trong phép đo AAS (Ox: chất oxy hóa; K.K: không khí.).
Bảng 2a: Quan hệ giữa nhiệt độ và loại khí đốt
Bảng 2b: Thành phần khí và nhiệt độ ngọn lửa
Đặc điểm và cấu tạo của ngọn lửa đèn khí:
Nhiệt độ là một thông số đặc trưng của ngọn lửa đèn khí. Nhiệt độ ngọn lửa của một loại đèn khí phụ thuộc rất nhiều vào bản chất và thành phần của chất khí được đốt cháy để tạo ra ngọn lửa, nghĩa là ứng với mỗi một hỗn hợp khí cháy, ngọn lửa sẽ có một nhiệt độ xác định và khi thành phần khí cháy thay đổi thì nhiệt độ ngọn lửa cũng bị thay đổi (bảng 2a và 2b). Ngoài yếu tố trên, tốc độ dẫn của hỗn hợp khí vào đèn để đốt cháy cũng ảnh hưởng đến nhiệt độ của ngọn lửa và qua đó mà ảnh hưởng đến cường độ của vạch phổ.
Xét về cấu tạo, ngọn lửa đèn khí gồm ba phần chính (hình 6):
Phần a: Là phần tối của ngọn lửa. Trong phần này hỗn hợp khí được trộn đều và đốt nóng cùng với các hạt sol khí (thể aerosol) của mẫu phân tích. Phần này có nhiệt độ thấp (700 – 1200oC). Dung môi hòa tan mẫu sẽ bay hơi trong phần này và mẫu được sấy nóng.
Phần b: Là vùng trung tâm của ngọn lửa. Phần này có nhiệt độ cao, nhất là ở đỉnh b, và thường không có màu hay có màu xanh rất nhạt. Trong phần này hỗn hợp khí được đốt cháy tốt nhất và không có phản ứng thứ cấp. Vì thế trong phép đo phổ hấp thu nguyên tử người ta phải đưa mẫu vào phần này để nguyên tử hóa và thực hiện phép đo, nghĩa là nguồn đơn sắc phải chiếu qua phần này của ngọn lửa.
Phần c: Là vỏ và đuôi của ngọn lửa. Vùng này có nhiệt độ thấp, ngọn lửa có mầu vàng và thường xảy ra nhiều phản ứng thứ cấp không có lợi cho phép đo phổ hấp thu nguyên tử. Chính do các đặc điểm và cấu tạo đó nên trong mỗi phép phân tích cần khảo sát để chọn được các điều kiện phù hợp, như thành phần và tốc độ của hỗn hợp khí cháy tạo ra ngọn lửa, chiều cao của ngọn lửa, v.v...
Hình 6: Cấu tạo của ngọn lửa đèn khí
Trang bị để nguyên tử hóa mẫu:
Muốn thực hiện phép đo phổ hấp thu nguyên tử (F-AAS), trước hết phải chuẩn bị mẫu phân tích ở trạng thái dung dịch. Sau đó dẫn dung dịch mẫu vào ngọn lửa đèn khí để hóa hơi và nguyên tử hóa mẫu phân tích và thực hiện phép đo. Quá trình nguyên tử hóa trong ngọn lửa gồm hai bước kế tiếp nhau. Bước một là chuyển dung dịch mẫu phân tích thành thể các hạt nhỏ như sương mù trộn đều với khí mang và khí cháy. Đó là các hạt sol khí (thể aerosol). Quá trình này được gọi là quá trình aerosol hóa hay nebulize hóa. Kĩ thuật thực hiện quá trình này và hiệu suất của nó ảnh hưởng trực tiếp đến kết quả của phép đo AAS.
Sau đó dẫn hỗn hợp aerosol cùng hỗn hợp khí đốt vào đèn (burner head) để nguyên tử hóa. Khí mang là một trong hai khí để đốt cháy tạo ra ngọn lửa. Thông thường người ta hay dùng khí oxy hóa (không khí nén hay khí N2O). Hai giai đoạn trên được thực hiện bằng một hệ thống trang bị nguyên tử hóa mẫu (hình 4). Hệ thống này gọi là Nebulizer System, gồm hai phần chính:
Đèn nguyên tử hóa mẫu (burner head). Các đèn này thường có hai dạng khác nhau, hay hình tròn có nhiều lỗ hay hình một khe hẹp có độ rộng từ 0.5 – 1.0 mm và chiều dài 5 cm hay 10 cm.
Loại khe dài 10 cm cho hỗn hợp khí đốt axetylen và không khí nén; loại khe dài 5 cm là cho hỗn hợp khí đốt axetylen và khí N2O (hình 7). Còn loại miệng tròn chỉ thích hợp cho phép đo phổ phát xạ.
Hình 7: Các loại đèn để nguyên tử hóa mẫu
Phần hai là buồng aerosol hóa mẫu. Đó là buồng để điều chế các hạt sol khí của mẫu với khí mang. Để thực hiện công việc này người ta áp dụng hai kĩ thuật theo nguyên lí khác nhau. Đó là kĩ thuật pneumatic-mao dẫn (phun khí) và kĩ thuật ultrasonic (siêu âm). Do đó cũng có hai loại hệ trang bị khác nhau (hình 8) để điều chế sol khí của mẫu.
Hình 8: Hệ thống tạo sol khí (nebulize) theo kĩ thuật pneumatic
K: Khí mang (oxy hóa).
S: Đường dẫn mẫu.
F: Khí cháy.
Q: Cánh quạt quay đều.
G: Màng bảo hiểm.
A: Đường dẫn thể aerosol lên đèn nguyên tử hóa.
Aerosol hóa mẫu theo kĩ thuật pneumatic-mao dẫn:
Theo cách này người ta dùng hệ thống nebulize và khí mang để tạo ra thể sợi khí của mẫu phân tích nhờ hiện tượng mao dẫn (hình 8).
Trước hết nhờ ống mao dẫn S và dòng khí mang K mà dung dịch mẫu được dẫn vào buồng aerosol hóa. Trong buồng này, dung dịch mẫu được đánh tung thành thể bụi (các hạt rất nhỏ) nhờ quả bi E và cánh quạt Q, rồi được trộn đều với hỗn hợp khí đốt và được dẫn lên đèn nguyên tử hóa (burner head).
Khi hỗn hợp khí đốt cháy ở burner head sẽ tạo ra ngọn lửa, dưới tác dụng của nhiệt của ngọn lửa các phần tử mẫu ở thể sợi khí sẽ bị hóa hơi và nguyên tử hóa tạo ra các nguyên tử tự do của các nguyên tố có trong mẫu phân tích.
Đó là những phần tử hấp thu năng lượng và tạo ...
 

Các chủ đề có liên quan khác

Top