quang_gio

New Member
Tải Giáo trình cơ sở mạng thông tin

Download miễn phí Giáo trình cơ sở mạng thông tin


Trước khi đi vào trình bày cấu trúc của công cụ NS2, phần này sẽ điểm lại một số công cụ mô phỏng thông dụng hiện nay và nhận xét ưu nhược điểm của chúng.
OPNET [8] là một sản phẩm thương mại tương đối nổi tiếng của công ty OPNET, bao gồm hai phần chính là OPNET Modeler và phần mở rộng cho mạng không dây OPNET Wireless Module. OPNET chạy dưới môi trường Windows cũng như Unix/Linux. OPNET rất thích hợp cho các tổ chức công nghiệp trong việc quy hoạch và đánh giá chất lượng dịch vụ của mạng thực tế bởi nó có sẵn một thư viện rất phong phú với các module mô phỏng thiết bị của nhiều nhà sản xuất khác nhau như Cisco, Lucent, Juniper. Tuy nhiên đối với các cơ sở nghiên cứu và trường đại học, có lẽ OPNET không phù hợp do giá tương đối đắt, mặt khác khi mô hình hoá một hệ thống, OPNET yêu cầu phải sử dụng thư viện với các thiết bị cụ thể nên việc xây dựng các mô hình tổng quát sẽ gặp khó khăn.


Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

1-9 trình bày về giản đồ thời gian của phương pháp cửa sổ trượt. Hình 1-9(a) minh họa trong trường hợp kích thước cửa sổ W > 2a + 1 và hình 1-9 (b) minh họa trong trường hợp kích thước cửa sổ W < 2a + 1.
Quy ước:
[X] là số nguyên nhỏ nhất lớn hơn hay bằng X.
A là phía phát, B là phía thu
Hình 5-9(a): Giản đồ thời gian phương pháp cửa sổ trượt, W > 2a+1
Hình 5-9(b): Giản đồ thời gian phương pháp cửa sổ trượt, W < 2a+1
Hiệu suất của phương pháp này phụ thuộc vào kích thước cửa sổ W và giá trị a. Trên hình 1-9(a) và 1-9(b), phía phát A thực hiện truyền các khung tại thời điểm t0 (bit đầu tiên của khung đầu tiên). Bit đầu tiên này đến phía thu B tại thời điểm t0+a. Toàn bộ khung đầu tiên đến B tại thời điểm t0+a+1. Giả thiết bỏ qua thời gian xử lý, như vậy B cũng có thể gửi báo nhận ACK tại thời điểm t0+a+1. Trong trường hợp kích thước báo nhận nhỏ thì đây cũng là thời điểm toàn bộ báo nhận ACK rời khỏi phía thu. Báo nhận này đến phía phát A tại thời điểm t0+2a+1. Giả thiết phía phát luôn có dữ liệu để có thể truyền liên tục, khi ấy có hai trường hợp xảy ra.
Nếu W ≥ 2a+1: báo nhận đầu tiên đến phía phát trước khi W = 0. Kể từ thời điểm A nhận được báo nhận đầu tiên, cứ mỗi một đơn vị thời gian A phát được một khung thông tin và cũng đồng thời nhận được một báo nhận, như vậy A có thể phát tin liên tục
Nếu W < 2a+1: kích thước cửa sổ phía phát W = 0 đạt tại thời điểm t0+W (xảy ra trước thời điểm t0+2a+1) và phía phát không thể phát khung trong khoảng thời gian từ t0+W đến t0+2a+1.
Hiệu suất của phương pháp cửa sổ trượt lúc này:
khi W < 2a+1 và khi W ≥ 2a + 1
Trường hợp 2: trong trường hợp thực tế, do có lỗi xảy ra nên hiệu suất thực tế nhỏ hơn hiệu suất trong trường hợp lý tưởng
trong đó NR là số là phát trung bình cho đến khi thành công.
Với trường hợp Go-back-N, mỗi khi có lỗi xảy ra, phía phát sẽ phải phát lại K khung (việc xác định K sẽ được tính ở phần sau).
Xác suất để khung thông tin được truyền đến lần thứ i thì đúng
(trong đó pi-1 là xác suất để i-1 lần truyền đầu tiên bị sai) và 1-p là xác suất để lần truyền thứ i đúng.
Với trường hợp này, tổng số khung phải truyền lại sẽ là f(i) = 1 + (i-1).K trong đó (i-1).K là tổng số khung phải truyền lại cho i-1 lần truyền sai.
Vậy số khung trung bình cần truyền trong trường hợp truyền đến lần thứ i mới đúng là N(i) = f(i).p(i)
Số khung trung bình cần truyền cho đến khi thành công:
Sử dụng các kết quả sau:
Và:
Ta có:
Tính K:
Để tính hiệu suất của phương pháp Go-back-N, ta giả thiết phía phát luôn có dữ liệu để phát (thực hiện phát liên tục, trừ khi phải dừng lại do kích thước cửa sổ = 0). Như vậy,
Nếu W ≥ 2a + 1 thì K » 2a + 1 – do khi NAK của khung i về thì phía phát đã phát thêm được » 2a + 1 khung
Nếu W < 2a + 1 thì K = W – do khi NAK của khung i về thì phía phát đã phát xong kích thước cửa sổ (W khung) và đang chờ báo nhận cho khung i để phát tiếp.
Hiệu suất:
khi W ≥ 2a+1
Và:
khi W < 2a+1
Nhận xét
Ưu điểm của phương pháp ARQ Go-back-N là hiệu suất cao hơn so với phương pháp ARQ dừng và đợi. Bên cạnh đó, cơ chế xử lý thông tin ở phía thu khá đơn giản và không cần bộ đệm.
Tuy nhiên, phương pháp này có nhược điểm là cần truyền lại quá nhiều khung thông tin trong trường hợp khung thông tin bị lỗi. Để khắc phục nhược điểm này, người ta đề xuất sử dụng cơ chế ARQ phát lại theo yêu cầu (Selective repeat ARQ)
Selective repeat ARQ
Cơ chế hoạt động
Tương tự như cơ chế phát lại Go-back-N, cơ chế phát lại có lựa chọn (selective repeat ARQ) cũng dựa trên phương pháp cửa sổ trượt. Phía phát được phép phát tối đa W khung thông tin (kích thước cửa sổ) trước khi nhận được báo nhận.
Điểm khác biệt giữa selective repeat và Go-back-N nằm ở cách hai cách này xử lý khung thông tin bị lỗi. Với trường hợp selective repeat, phía phát sẽ chỉ thực hiện phát lại khung thông tin bị lỗi mà không cần phát lại tất cả các khung khác sau khung lỗi nếu như các khung đó không bị sai. Cơ chế này giúp tăng hiệu quả sử dụng đường truyền so với cơ chế Go-back-N.
Hình 5-10 mô tả nguyên tắc hoạt động của selective repeat
Hình 1-10: Nguyên tắc hoạt động của selective repeat
Một số chú ý của selective repeat ARQ
Do phía phát chỉ thực hiện phát lại các khung bị lỗi, do đó các khung đến phía thu có thể không theo thứ tự như khi được phát đi ở phía phát
Phía thu phải có khả năng xử lý các khung thông tin không theo thứ tự.
Do các khung thông tin phải được đưa lên lớp trên theo đúng thứ tự nên phía thu phải có bộ đệm để lưu tạm các khung thông tin trong khi chờ các khung bị mất hay lỗi được phát lại.
Phía phát phải thực hiện báo nhận cho tất cả các khung thông tin mà nó nhận đúng. Các khung thông tin không được báo nhận trong khoảng thời gian time-out tương ứng sẽ được coi là bị mất hay lỗi
Trong trường hợp phía thu nhận được một khung thông tin sai, phía thu có thể gửi NAK để báo lỗi và yêu cầu truyền lại khung đó (selective reject)
Hiệu suất của cơ chế selective repeat ARQ
Tương tự như trường hợp Go-back-N, hiệu suất của cơ chế selective repeat cũng được tính cho hai trường hợp: lý tưởng và không lý tưởng
Trường hợp 1: lý tưởng.
Do bản chất của selective repeat là cũng hoạt động dựa trên phương pháp cửa sổ trượt (giống Go-back-N) nên trong trường hợp lý tưởng (không có lỗi), hiệu suất của selective repeat cũng chính là hiệu suất của Go-back-N và là hiệu suất của phương pháp cửa sổ trượt khi môi trường không có lỗi.
Hiệu suất:
khi W < 2a+1

khi W ≥ 2a+1
Trường hợp 2: không lý tưởng
Trong trường hợp này, hiệu suất của phương pháp selective repeat sẽ bằng hiệu suất của phương pháp cửa sổ trượt trong trường hợp lý tưởng chia cho số lần phát lại trung bình NR (tương tự như trường hợp Go-back-N). Hiệu suất . Tuy nhiên NR trong trường hợp selective repeat khác với trường hợp Go-back-N.
Tính NR – do bản chất của việc truyền lại trong selective repeat hoàn toàn tương tự như trong phương pháp dừng và đợi nên với cách tính tương tự, .
Hiệu suất:
khi W < 2a+1

khi W ≥ 2a+1
Nhận xét
Cơ chế selective repeat cho hiệu suất hoạt động trên đường truyền cao hơn so với Go-back-N do cơ chế này sử dụng đường truyền hiệu quả hơn. Tuy nhiên, cơ chế selective repeat hoạt động phức tạp hơn do nó yêu cầu phía thu phải có khả năng xử lý các khung thông tin đến phía thu không theo thứ tự. Ngoài ra, phía thu cần có bộ đệm để có thể lưu tạm thời các khung thông tin này.
Điều khiển luồng và tránh tắc nghẽn theo phương pháp cửa sổ
Cơ chế điều khiển luồng và chống tắc nghẽn dựa trên phương pháp cửa sổ được thực hiện bởi việc giới hạn số lượng gói tin được truyền ở phía phát nhằm đảm bảo thông tin này không vượt quá khả năng xử lý của phía thu.
Theo cơ chế này, phía phát sẽ không thực hiện phát tin chừng nào phía thu còn chưa xử lý xong gói tin (hay một số gói tin) trước đó. Khi phía thu xử lý xong thông tin do phía phát gửi đến thì nó sẽ báo cho phía phát biết và lúc này, phía phát sẽ tiếp tục gửi các gói tin ti
 
Top