windcloud232

New Member
Download Luận văn Mô hình hoá và mô phỏng robot song song loại Hexapod

Download miễn phí Luận văn Mô hình hoá và mô phỏng robot song song loại Hexapod





MỤC LỤC
Trang
Mục lục
Danh mục các ký hiệu, các c hữ viết tắt 1
Danh mục hình vẽ, đồ th ị 2
Lời mở đầu 6
Chương 1- Nghiên cứu tổng quan về Ro bot 8
1.1 Giới thiệu chung về Robot 9
1.1.1 Khái niệm về Ro bot 9
1.1.2 Phân loại Robot 10
1.1.2.1 Phân loại theo dạng hình học c ủa không gian ho ạt động 10
1.1.2.2 Phân loại theo thế hệ 12
1.1.2.3 Phân loại theo bộ điều khiển 15
1.1.2.4 Phân loại theo nguồn dẫn động 16
1.1.2.5 Phân loại theo kết c ấu động học 17
1.2 Tổ ng quan về Ro bot song song loại He xapo d 20
1.2.1 Vài nét chung về Robot song song 20
1.2.2 Robot song song loại Hexapod 25
1.2.2.1 Cấu trúc hình học 26
1.2.2.2 Mô tả to án họ c của đối tượng He xapod 26
Chương 2- Mô hình hoá Robot song song loại Hexapod bằng bộ công c ụ SimMechanics32
2.1 Giới thiệu chung về bộ công cụ Sim Mechanics 33
2.1.1 Simmec hanics và ứng dụng c ủa SimMechanics 33
2.1.2 Mô t ả c huyển động với SimMechanics 34
2.1.2.1 Chuyển động và trạng thái c huyển động 34
2.1.2.2 Chuyển động c ủa th ân trong SimMechanics 34
2.1.2.3 SimMechanics thay thế sự định hướng của thân 36
2.1.2 Thư viện c ác khối chuẩn của SimMechanics 38
2.1.2.1 Thư viện c ác khối Bo dies 39
2.1.2.2 Thư viện c ác khối hạn c hế và truyề n động 40
2.1.2.3 Thư viện c ác phần tử lực 41
2.1.2.4 Thư viện c ác khớp 41
2.1.2.5 Thư viện cơ c ấu chấp hành và thiết bị đo 42
2.1.2.6 Các ứng dụng khác 43
2.2 Mô hình ho á Robot song song loại Hexapod 44
2.2.1 Xây dựng mô hình khối SimMechanics 44
2.2.2 Xây dựng cấu trúc từng chân 46
2.2.2.1 Cấu trúc chân thứ nhất 46
2.2.2.2 Cấu trúc chân hai, ba, bố n, năm, sáu 47
2.2.3 Định dạng các khối 50
2.2.3.1 Tính toán c ác thô ng số đặc trưng c ần thiết của từng khối 50
2.2.3.2 Định dạng c ác khối trong sơ đồ SimMechanics 61
2.2.4 Hoàn chỉnh mô hình c ủa He xapod 65
Chương 3- Khảo sát ho ạt động của Robot song song loại He xapod 71
3.1 Khảo sát ho ạt động của Hexapo d ở chế độ động học ngược 72
3.1.1 Xây dựng mô hình 72
3.1.2 Lựa chọ n chế độ và kết quả 76
3.2 Khảo sát ho ạt động của Hexapo d ở chế độ động học thuận 79
3.3 Các sơ đồ Simulink phục vụ mô phỏng toàn bộ hệ thống Hexapod 82
3.3.1 Cơ sở to án học 82
3.3.2 Xây dựng các hệ thống con 84
3.3.2.1 Khối Plant 84
3.3.2.2 Khối Leg Tranjectory 85
3.3.2.3 Bộ điều khiển PID 88
3.3.2.4 Khối điểm đặt trước 89
Kết luận 91
Tài liệu tham kh ảo



Để tải bản DOC Đầy Đủ xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung:

t triển là có thể
kiểm tra được tính chất của lốp máy bay trong những điều kiện tải hết sức khác
nhau.
Hình 1.10 Robot sơn với kết cấu động học song song do V. Willard;
V. Pollard đăng ký sáng chế 1942 ( US Patent 2.2286571)
Hình 1.11 Mặt bàn công tác Gough nguyên bản:
a) 1954 b) 2000
- 22 –
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Năm 1965 D.Stewart mô tả trong tạp chí “Institution of mechmical
Engineers - IMECHE” một bàn chuyển động cho thiết bị mô phỏng bay dựa trên cơ
sở của cơ cấu song song. Tuy nhiên thiết bị này không liên quan gì đến một nguyên
lý mà ngày nay vẫn gọi là bàn công tác Steward (Steward Plattform).
Cùng thời gian đó, người Mỹ Klaus Cappel, một nhân viên của Franklan
Institue Research Labratories ở Philadelphia với sự khích lệ của công ty United
Technology đã phát triển một thiết bị mô phỏng bay cho máy bay lên thẳng và đăng
ký sáng chế năm 1964. Trên cơ sở này, hàng chục năm tiếp theo nhiều hãng đã phát
triển và chế tạo những thiết bị mô phỏng bay.
Trong những năm 80 và 90 cơ cấu chuyển động song song được phát triển
chủ yếu cho thiết bị vân hành và được sử dụng ngày càng nhiều trong công nghiệp.
Khởi xướng đầu tiên có sử dụng cơ cấu động học song song trong máy công
cụ bắt nguồn từ Liên Xô cũ vào cuối những năm 70 (64, 65) ở viện kỹ thuật điện
Novosibirsk. Đầu những năm 90 đã xuất hiện nhiều phiên bản mẫu. Vào cuối những
Hình 1.12 Steward Gough platform
- 23 –
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
năm 80 việc phát triển máy công cụ có kết cấu động học song song cũng được đẩy
mạnh ở Mỹ (81).
Trong những năm tiếp theo do có sự hỗ trợ khá mạnh của chương trình
nghiên cứu quốc gia và quốc tế nên luôn luôn có những phiên bản mẫu mới được
phát triển, chế tạo và giới thiệu trên các hội chợ, hội thảo quốc gia và quốc tế. Cho
tới nay trên thế giới có một số máy gia công và thiết bị vận hành đã được xác nhận
là tốt, góp phần tạo ra đột phá trong thực tế công nghiệp.
Một số ứng dụng của Hexapod:
Hình 1.13 Thiết bị mô phỏng bay đầu tiên được thương mại hoá
do Klan Cappel phát triển vào giữa những năm 60
- 24 –
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 1.14 Quan sát giao thoa nhờ Hexapod
Hình 1.15 Nguyên lý Hexapod ứng dụng trong thiết bị mô phỏng bay
- 25 –
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
1.2.2 ROBOT SONG SONG LOẠI HEXAPOD
Hexapod theo ngôn ngữ Hy Lạp được hiểu là: “hexa” = 6, “podus” = foot
hay còn được gọi là Steward-Gough-Platform. Nhìn chung cấu trúc Hexapod bao
gồm: mặt nền trên upper platform (mặt bàn gá phôi); các khớp (joints); 6 thanh dẫn
động song song có thể thay đổi chiều dài và mặt nền dưới (lower platform).
Hình 1.17. Sơ đồ nguyên lý Hexapod đề tài lựa chọn
Hình 1.16 Nguyên lý Hexapod ứng dụng trong y học
- 26 –
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
1.2.2.1 CẤU TRÚC HÌNH HỌC
Robot này có sáu chân (hình minh họa). Mỗi chân gồm chân trên (upper leg)
và chân dưới (lower leg). Chân trên được gắn với mặt bàn gá phôi bởi một khớp
xoay dạng bi. Chân trên và chân dưới nối với nhau nhờ khớp trượt. Thông qua sáu
khớp trượt này, sáu động cơ truyền động cho robot. Chân dưới có dạng hình trụ tròn
rỗng trong không gian với mỗi đầu là một khớp xoay dạng bi gắn ở mặt nền cố
định.
Từ cấu trúc hình học của Hexapod, ta có sơ đồ khối các khớp của Hexapod là:
Hình 1.18 Sơ đồ khối các khớp của Hexapod
Trong đó các khớp có màu đậm là khớp chủ động (khớp được truyền động
trực tiếp bởi động cơ), S (Spherical) thay mặt cho khớp cầu, P (Prismatic) thay mặt
cho khớp trượt.
1.2.2.2 MÔ TẢ TOÁN HỌC CỦA ĐỐI TƢỢNG HEXAPOD
a, Bậc tự do
Xuất phát từ ý tưởng thiết kế đối xứng, với sơ đồ nguyên lý (hình 1.17) và sơ
đồ khối các khớp (hình 1.18) của Hexapod, 6 thanh S-P-S cung cấp cho chúng ta
tổng số bậc tự do là:
S P S
S P S
S P S
S P S
S P S
S P S
M

t
đ
ế
E
n
d
E
fe
c
to
r
in
i C P C
i=1
f =6*f + 6*f + 6*f = 6*3+ 6+ 6*3 = 42
(1.1)
- 27 –
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Trong đó: ni là số khớp.
Khớp cầu Spherical Khớp trượt Prismatic
fC = 3 dof fP = 1 dof
Sử dụng công thức tính bậc tự do của Chebychev - Grubler - Kutzbach trong
“Development of Reconfigurable Parallel Kinematic Machines using Modular
Design Approach” cho một cơ cấu cơ khí:
Mà:
d = 6 nếu cơ cấu hoạt động trong không gian và bằng 3 trong trường hợp còn
lại.
n - số thân (bodies) của cơ cấu. Với ý tưởng thiết kế đối xứng, từ sơ đồ khối
các khớp hình 1.18 thấy ngay được giữa các khớp tương ứng sẽ là các chân Robot
được thay mặt bằng khối thân và mặt nền di động chứa điểm End Effector cũng
được biểu diễn bằng một thân. Như vậy: n = 2*6 + 1 = 13 (bodies).
g - tổng số khớp (joints) của cơ cấu. Từ hình 1.18 ta thấy:
g = 3*6 = 18 (joints)
Vậy số bậc tự do của End Effector là:
in
i
i=1
Dof = f + d(n - g -1)
in
i
i=1
Dof = f + d(n - g -1) = 42 + 6(13-18 -1) = 6
(1.2)
(1.3)
Hình 1.19 Mô hình khớp cầu và khớp trượt
- 28 –
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
b, Phƣơng trình động học ngƣợc
Từ sơ đồ nguyên lý (hình 1.17), ta xây dựng được mô hình Hexapod có dạng
như sau:
Gắn hệ toạ độ A(x, y, z) lên đế và hệ toạ độ B(u, v, w) lên mặt bàn gá phôi.
Chuyển vị của mặt bàn gá phôi so với đế được thay thế bằng chuyển vị giữa hệ toạ
độ B(u, v, w) so với hệ toạ độ A(x, y, z) và được biểu diễn bằng vector chuyển vị p
cùng với ma trận quay R. Trong đó u, v, w là các vector đơn vị trong hệ toạ độ B(u,
v, w) và:
x x x
y y y
z z z
u v w
u v w
u v w
R
(1.4)
Hình 1.20 Mô hình Robot Hexapod trong không gian
A4
A5
A6
A1
A2 A3
B3
B4
B5
B6
B1
B2
x
y
z
w
v
u
O
P b4
a4
li p
- 29 –
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
với các phần tử của ma trận
R
phải thoả mãn đồng thời các điều kiện:
Ký hiệu ai = [aix, aiy, aiz] và
iu iv iwb ,b ,bib
là các vector biểu diễn vị trí của
tâm khớp xoay dạng bi Ai, Bi (với i = 1, 2, 3, 4, 5, 6) trong hệ toạ độ A(x, y, z) có
thể viết phương trình vector vòng kín tương ứng với chân thứ i như sau:
Từ đây ta có:
2 2 2
2 2 2
2 2 2
+ + = 1
+ + = 1
+ + = 1
+ + = 0
+ + = 0
+ + = 0
u u u
v v v
w w w
u v u v u v
u w u w u w
v w v w v w
x y z
x y z
x y z
x x y y z z
x x y y z z
x x y y z z
(1.5)
(1.6)
(1.7)
2
il i i i i i i
T T
= l .l = p + R*b - a . p + R*b - a
2
il i i i i i i i i
T TT T T T
= p p + b b + a a + 2p R*b - 2p a - 2 R*b a
i i il = p + R*b -a
3A
4A
4B
3B
x
z
y
i
l
1A
2A
2B
1B
y
z
x
i
l
i
l
5A
6A
6B
5B
-x
z
-y
Hình 1.21 Phân tích hình học các chi tiết của Hexapod
- 30 –
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Thay i = 1 6 ta thu được hệ 6 phương trình biểu diễn thế của mặt bàn gá phôi so
với đế trong đó
ib
và ai là các vector hằng phụ thuộc vào kết cấu của tay máy.
Vậy chiều dài của các chân được xác định bởi:
Đây chính là phương trình động học ngược của Hexapod.
Lấy đạo hàm của li theo thời gian ta được tốc độ. Nhưng vì chiều dài này lấy từ
khớp cầu dưới Ai đến khớp cầu...
 

Các chủ đề có liên quan khác

Top