nt_phong1553

New Member
Download Luận văn Điều khiển tách kênh hệ tuyến tính bằng phản hồi đầu ra theo nguyên lý tách

Download miễn phí Luận văn Điều khiển tách kênh hệ tuyến tính bằng phản hồi đầu ra theo nguyên lý tách





Mục lục
Lời mở đầu
Mục lục. 1
Chương 1. Tổng quan về bộ điều khiển tách kênh
1.1 Nội dung bài toán điều khiển tách kênh. 3
1.2 Hai phương pháp tách kênh cơ bản.4
Chương 2. Điều khiển tách kênh trong miền tần số và nhược điểm của nó
2.1 Mô hình ma trận hàm truyền. 6
2.2 Đánh giá sự tương tác các kênh. 11
Chương 3. Điều khiển tách kênh bằng phản hồi trạng thái
3.1 Điều khiển phản hồi trạng thái. 12
3.2 Thuật toán tìm các bộ điều khiển của bài toán tách kênh. 14
Chương 4. Quan sát trạng thái
4.1 Bộ quan sát Luenberger. 25
4.1.1 Phân tích tính quan sát được. 25
4.1.1.1. Khái niệm quan sát được và quan sát được hoàn toàn. 25
4.1.1.2. Một số kết luận chung về tính quan sát được của hệ tuyến tính. 26
4.1.1.3. Tính đối ngẫu và các tiêu chuẩn xét tính quan sát được của hệ tham số hằng. 32
4.1.2 Bộ quan sát Luenberger. 35
4.1.2.1. Phương pháp thiết kế. 35
4.1.2.2. Các phương pháp khác nhau phục vụ bài toán thiết kế bộ
điều khiển phản hồi trạng thái gán điểm cực. 38
a. Phương pháp Ackermann. 38
b. Phương pháp Roppenecker. 40
c. Phương pháp Modal phản hồi trạng thái. 42
d. Bài toán điều khiển phản hồi trạng thái tối ưu
Thiết kế bộ điều khiển LQR phản hồi dương. 50
4.2 Các bộ quan sát trạng thái tuyến tính khác. 58
4.2.1 Bộ quan sát Kalman. 58
4.2.2 Bộ điều khiển tối ưu phản hồi đầu ra LQG. 61
4.3 Kết luận về chất lượng hệ kín: NGUYÊN LÝ TÁCH. 63
Chương 5. Nghiên cứu khả năng ghép chung bộ điều khiển phản hồi trạng thái
tách kênh với bộ quan sát trạng thái
5.1 Mô phỏng hệ MIMO tuyến tính 2 đầu vào 2 đầu ra. 65
5.1.1 Đối tượng thứ nhất. 65
5.1.2 Đối tượng thứ hai. 70
5.2 Mô phỏng bộ điều khiển tách kênh cho đối tượng MIMO tuyến tính. 75
5.2.1 Đối tượng thứ nhất. 75
5.2.2 Đối tượng thứ hai. . 83
5.3 Mô phỏng bộ quan sát Luenberger cho đối tượng MIMO tuyến tính.91
5.3.1 Đối tượng thứ nhất. 91
5.3.2 Đối tượng thứ hai. 99
5.4 Nghiên cứu mô phỏng khả năng ghép chung bộ điều khiển phản hồi trạng
thái tách kênh với bộ quan sát trạng thái. . 105
5.4.1 Đối tượng thứ nhất. 105
5.4.2 Đối tượng thứ hai. 112
Kết luận . 119
Danh mục tài liệu tham khảo
Danh mục các hình vẽ, đồ thị sử dụng trong luận văn
Tóm tắt luận văn



Để tải bản DOC Đầy Đủ xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung:

i trạng thái
§iÒu khiÓn t¸ch kªnh hÖ tuyÕn tÝnh b»ng ph¶n håi ®Çu ra theo nguyªn lý t¸ch
Ch•¬ng 4: Quan s¸t tr¹ng th¸i
Page: 42
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
nhận những giá trị si , i = 1,2, ..., n cho trước làm điểm cực. Chú ý rằng nếu có
sk là một số phức thì cũng phải có một giá trọ liên hợp với nó si = ks , vì chỉ
như vậy các phần tử của R mới có thể là những số thực.
Giả sử rằng đã tìm được R, vậy thì do det (skI-A+BR)= 0 với mọi k = 1,2,
..., n nên ứng với mỗi k phải có một véctơ (riêng bên phải) ak không đồng
nhất bằng 0 thoả mãn:
(skI-A+BR)ak = 0  (skI-A)ak = -BRak
Nếu gọi tk = -Rak là những véctơ tham số thì:
(skI-A)ak = -Btk

ak = (skI-A)
-1
Btk k = 1,2, ... ,n (4.11)
và (t1, ..., tn) = -R(a1,... , an)

R = -(t1, ..., tn)(a1, . .., an)
-1
(4.12)
Từ đây, ta có thể hình dung sơ lược việc thiết kế bộ điều khiển phản hồi
trạng thái R gán điểm cực sk, k = 1,2, ..., n cho trước, gồm các bước như
sau:
- Chọn n véctơ tham số t1, ..., tn sao cho với nó n véctơ ak, k = 1,2, ..., n
xác định theo công thức: ak = (skI-A)
-1
Btk k = 1,2, ... ,n
lập thành hệ độc lập tuyến tính, tức là ma trận (a1, ..., an) không bị suy
biến.
- Xác định R theo công thức: R = -(t1, ..., tn)(a1, . .., an)
-1
Thuật toán Roppenecker dạng tổng quát:
1. Tính các véctơ ak ứng với các giá trị sk đã cho:
a. Nếu sk không phải là giá trị riêng của A thì tính theo công thức:
ak = (skI-A)
-1
Btk k = 1,2, ... ,n
Trong đó tk là tham số tự do.
§iÒu khiÓn t¸ch kªnh hÖ tuyÕn tÝnh b»ng ph¶n håi ®Çu ra theo nguyªn lý t¸ch
Ch•¬ng 4: Quan s¸t tr¹ng th¸i
Page: 43
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
c. Nếu sk là giá trị riêng của A thì chọn tk = 0 và ak là véctơ riêng bên
phải tương ứng của A tính theo công thức: (skI - A)ak = 0
2. Chọn các véctơ tham số còn tự do tk sao cho với nó n véctơ ak , k =
1,2, ..., n xác định ở bước 1 lập thành hệ độc lập tuyến tính, rồi tính R
theo công thức: R = -(t1, ..., tn)(a1, . .., an)
-1
c. Phương pháp Modal phản hồi trạng thái
Phương pháp modal do Rosenbrock xây dựng năm 1962 là phương pháp thiết
kế bộ điều khiển tĩnh R, phản hồi trạng thái cho đối tượng MIMO mô tả bởi:
dx
Ax Bu
dt
 
để hệ kín thu được với mô hình
( )
dx
A BR x Bw
dt
  
nhận những giá trị cho trước si , i = 1,2, ..., n làm điểm cực, tức là có:
det(siI-A+BR) = với mọi i = 1,2, ...,n
Tư tưởng của phương pháp khá đơn giản. Nó bắt đầu từ việc chuyển mô
hình đối tượng, cụ thể là ma trận A, sang dạng đường chéo (dạng modal)
hay Jordan để thiết kế bộ điều khiển rồi sau đó mới chuyển ngược lại mô
hình ban đầu.
Để mô tả nội dung phương pháp modal, ta bắt đầu với trường hợp ma
trận A của đối tượng có dạng giống đường chéo.
dx
Ax Bu
dt
y C x Du

 

  
R
-
w u y
x
Hình 4.5: Thiết kế bằng phản hồi trạng thái
§iÒu khiÓn t¸ch kªnh hÖ tuyÕn tÝnh b»ng ph¶n håi ®Çu ra theo nguyªn lý t¸ch
Ch•¬ng 4: Quan s¸t tr¹ng th¸i
Page: 44
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Một ma trận A được gọi là giống đường chéo, nếu:
- hay là các giá trị riêng gi, i = 1,2, ... , n của nó khác nhau từng
đôi một.
- hay là ứng với một giá trị riêng gk bội q thì phải có đúng q
véctơ riêng bên phải độc lập tuyến tính.
Một ma trận A giống đường chéo luôn chuyển được về dạng đường chéo
nhờ phép biến đổi tương đương, trong đó ma trận đường chéo thu được
có các phần tử trên đường chéo chính là giá trị riêng của nó gi , i = 1,2,
... ,n
1
21
0 0
0 0
( )
0 0
i
n
g
g
M AM diag g
g

 
 
  
 
 
 
và M là ma trận modal có các véctơ cột là véctơ riêng bên phải của A:
M = (a1 ,..., an)
(giI-A)ai = 0 với mọi i = 1,2, ...,n
Gọi gi, i = 1,2, ..., n là các giá trị riêng và M là ma trận modal của A. Khi
đó với phép đổi biến
x = Mz

z = M
-1
x
Ta sẽ thu được mô hình trạng thái tương đương cho đối tượng:
1 1
1
dz
M AM z M Bu
dt
Gz M Bu
 

 
 
Trong đó: G = M-1AM = 1
0
0 n
g
g
 
 
 
 
 
=diag(gi)
§iÒu khiÓn t¸ch kªnh hÖ tuyÕn tÝnh b»ng ph¶n håi ®Çu ra theo nguyªn lý t¸ch
Ch•¬ng 4: Quan s¸t tr¹ng th¸i
Page: 45
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Hình 4.6a:
Hình 4.6b:
Hình 4.6c:
Hình 4.6d:
B M
-1

M
G
u z x z
z
B M
-1

M
G
u x z
S - G
z
B M
-1

M
G
w x z
T S - G M
-1
Bộ điều khiển phản hồi dương
B M
-1

M
G
u x z
M
-1 S-G
§iÒu khiÓn t¸ch kªnh hÖ tuyÕn tÝnh b»ng ph¶n håi ®Çu ra theo nguyªn lý t¸ch
Ch•¬ng 4: Quan s¸t tr¹ng th¸i
Page: 46
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Với việc chuyển đổi trạng thái nhờ ma trận modal M như vậy thì mạch
phản hồi chính là ma trận đường chéo chứa các điểm cực của hệ. Do đó,
muốn hệ thống nhận tất cả các giá trị cho trước si , i = 1,2, …,n làm giá
trị riêng ta chỉ cần nối song song với G một khối khác có S -G (Hình
4.6b) trong đó:
1
2
0 0
0 0
( )
0 0
i
n
s
s
S diag s
s
 
 
  
 
 
 
Chứng minh:
Từ sơ đồ khối của hệ ta có mô hình trạng thái:
1 1
1 1 1
1
( )
dz
G S G z M Bu S z M Bu
dt
d x
M SM x M Bu
dt
MSM x Bu
 
  

     
  
 
Do đó hệ sẽ có các điểm cực là giá trị riêng của MSM -1. Nhưng giá trị
riêng của MSM -1 cũng là giá trị riêng của S vì MSM -1 và S là hai ma
trận tương đương, nên hệ sẽ có các điểm cực là si, i = 1,2, …,n (Cũng là
các giá trị riêng của S). Suy ra điều phải chứng minh.
Việc còn lại là phải đưa hệ trong hình 4.6b về dạng thực hiện được, tức
là về dạng mà điểm hồi tiếp phải là điểm trạng thái x và đầu ra của khâu
hồi tiếp phải kết hợp được với u. Áp dụng quy tắc về đại số sơ đồ khối,
trước tiên dễ dàng có ngay sơ đồ khối như hình 4.6c vì M là ma trận
không suy biến.
Để tiếp tục, ta chuyển điểm hồi tiếp tới trước khâu B. Vấn đề sẽ rất đơn
giản nếu B là ma trận không suy biến. Khi đó ta chỉ cần chọn:
T = (M
-1
B)
-1
= B
-1
M (4.13)
§iÒu khiÓn t¸ch kªnh hÖ tuyÕn tÝnh b»ng ph¶n håi ®Çu ra theo nguyªn lý t¸ch
Ch•¬ng 4: Quan s¸t tr¹ng th¸i
Page: 47
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
là được và bộ điều khiển phản hồi âm R khi đó sẽ làl:
R = -T(S-G)M
-1
(4.14)
Song nói chung do B không phải ma trận vuông (B có n hàng, r cột với n
>r) nên tích M
-1B cũng có n hàng, r cột và do đó không thể tính T
theo (4.13). Nếu như tích M -1B có hạng là r thì ta có thể giả sử rằng r
véctơ hàng đầu tiên của nó là độc lập tuyến tính. Điều giả sử này hoàn
toàn không làm mất tính chất tổng quát của phương pháp vì tích M -1B
phụ thuộc vào M nên lúc nào ta cũng có thể sắp xếp lại thứ tự các véctơ
riêng bên phải của A trong M để có được r véctơ hàng đầu tiên trong
M
-1B là độc lập tuyến tính.
Khi M
-1B có r véctơ hàng đầu tiên là độc lập tuyến tính, tức là:
M
-1
B =
r
n r
K
K 
 
 
 
(4.15)
Trong đó Kr là ma trận vuông không suy biến bao gồm r véctơ hàng đầu
tiên của M -1B, thì thay vì xác định T theo ...
 

Các chủ đề có liên quan khác

Top