Sách chưa phân loại, sách kiến thức Ebook download miễn phí
Nội quy chuyên mục: - Hiện nay có khá nhiều trang chia sẻ Tài liệu nhưng mất phí, đó là lý do ket-noi mở ra chuyên mục Tài liệu miễn phí.

- Ai có tài liệu gì hay, hãy đăng lên đây để chia sẻ với mọi người nhé! Bạn chia sẻ hôm nay, ngày mai mọi người sẽ chia sẻ với bạn!
Cách chia sẻ, Upload tài liệu trên ket-noi

- Những bạn nào tích cực chia sẻ tài liệu, sẽ được ưu tiên cung cấp tài liệu khi có yêu cầu.
Nhận download tài liệu miễn phí
By lovely_girlbeautyful
#674923

Download Chuyên đề Đối xứng tâm đối xứng - Trục đối xứng- Đồ thị đối xứng và công thức chuyển trục miễn phí





V. LẬP PHƯƠNG TRÌNH MỘT ĐƯỜNG CONG ĐỐI XỨNG VỚI MỘT ĐƯỜNG
CONG QUA MỘT ĐIỂM- HOẶC QUA MỘT ĐƯỜNG THẲNG
A. BÀI TOÁN:
Cho đường cong (C) có phương trình y=f(x) và một điểm M (x0; y0) (cho sẵn)
1.Lập phương trình đường cong (C') đối xứng với đường cong (C) qua điểm M.
2. Lập phương trình đường cong (C') đối xứng với đường cong (C) qua đừng thẳng d:
y=kx+m



Để DOWNLOAD tài liệu, xin trả lời bài viết này, mình sẽ upload tài liệu cho bạn ngay

Tóm tắt nội dung:


Khi đó phương trình của đồ thị (C) trong hệ mới : Y=F(X;y0;x0)
B. GHI NHỚ :
- Đối với đồ thị hàm phân thức , thì giao hai tiệm cận là tâm đối xứng
- Đối với hàm số bậc ba thì tọa độ điểm uốn là tọa độ tâm đối xứng
- Đối với hàm số trùng phương thì trục Oy là trục đối xứng của đồ thị hàm số .
C. CÁC BÀI TOÁN THƯỜNG GẶP
I.CHỨNG MINH ĐỒ THỊ Y=F(X) CÓ TRỤC ĐỐI XỨNG
CÁCH GIẢI
Có hai cách
* Cách 1.
- Giả sử trục đối xứng có phương trình : 0x x . Gọi điểm  0;0I x
- Chuyển     0Oxy IXYOI x x X
y Y
    

- Viết phương trình đường cong (C) trong tọa độ mới : Y=F(X;x0;y0) (*)
- Buộc cho (*) là một hàm số chẵn : ( Cho hệ số các ẩn bậc lẻ bằng 0 )
- Giải hệ các ẩn số bậc lẻ bằng 0 ta suy ra kết quả cần tìm .
* Cách 2. Nếu với 0x x là trục đối xứng thì : f(  0 0)x x f x x   đúng với mọi x , thì ta
cũng thu được kết quả .
Ví dụ 1. Cho hàm số  4 3 24 7 6 4y x x x x C     . Chứng minh rằng đường thẳng x=1 là
trục đối xứng của đồ thị (C)
( hay : Chứng minh rằng đồ thị hàm số có trục đối xứng ; tìm phương trình của trục đối
xứng đó ? )
GIẢI
www.VNMATH.com
Nguyễn Đình Sỹ- ĐT: 02403833608 Trang 2
- Giả sử đường thẳng x= 0x là trục đối xứng của đồ thị (C). Gọi I( 0;0)x
- Chuyển :     0Oxy IXYOI x x X
y Y
    

- Phương trình của (C) trong hệ tọa độ mới là :
       
       
4 3 2
0 0 0 0
4 3 2 2 3 2 4 3 2
0 0 0 0 0 0 0 0 0 0
4 7 6 4
4 4 6 5 4 5 7 6 4 7 6 4
Y x x x x x x x x
Y X x X x x X x x x X x x x x
        
              
- Để hàm số là chẵn thì các hệ số của ẩn bậc lẻ và số hạng tự do bằng không :
0
3 2
0 0 0 0
4 3 2
0 0 0 0
4 4 0
4 5 7 6 0 1
4 7 6 4 0
x
x x x x
x x x x
            
Chứng tỏ đồ thị hàm số có trục đối xứng , và phương trình của trục đối xứng là : x=1.
Ví dụ 2. Tìm tham số m để đồ thị hàm số :  4 3 24 my x x mx C   có trục đối xứng song
song với trục Oy.
GIẢI
- Giả sử đường thẳng x= 0x là trục đối xứng của đồ thị (C). Gọi I( 0;0)x
- Chuyển :     0Oxy IXYOI x x X
y Y
    

- Phương trình của (C) trong hệ tọa độ mới là :
     4 3 2 2 3 2 4 3 20 0 0 0 0 0 0 0 04 4 6 3 4 12 2 4Y X x X x x m X x x mx X x x mx           
- Để là hàm số chẵn thì :  0 0
3 2
0 0 0
4 1 0 1
44 12 2 0
x x
mx mx
          
II. Chứng minh đồ thị (C) có tâm đối xứng .
CÁCH GIẢI
Ta cũng có hai cách giải
Cách 1.
- Giả sử đồ thị (C) có tâm đối xứng là  0 0;I x y
- Chuyển :     0
0
Oxy IXYOI
x x X
y y Y
     

- Viết phương trình (C) trong hệ tọa độ mới : Y=F(X;x0;y0) (*)
- Buộc cho (*) là một hàm số lẻ : ( Cho hệ số các ẩn bậc chẵn )
- Giải hệ ( với hệ số các ẩn bậc chẵn bằng 0 ) ta suy ra kết quả .
Cách 2.
Nếu đồ thị (C) nhận điểm I làm tâm đối xứng thì :
0 0 0( ) ( ) 2f x x f x x y    với mọi x
www.VNMATH.com
Nguyễn Đình Sỹ- ĐT: 02403833608 Trang 3
VÍ DỤ MINH HỌA
Ví dụ 1. ( ĐH-QG-98). Cho (C) : 2
1
xy
x
 
a. Khảo sát sự biến thiên và vẽ đồ thị (C)
b. Chứng minh (C) có tâm đối xứng , tìm tọa độ tâm đối xứng đó .
GIẢI
a. Học sinh tự vẽ đồ thị (C)
b. Giả sử (C) có tâm đối xứng là I  0 0;I x y
- Phương trình (C) viết lại thành dạng : 11
1
y x
x
   
- Chuyển :     0
0
Oxy IXYOI
x x X
y y Y
     

- Phương trình (C) trong hệ mới là :
   
   
0 0
0
0 0
0
11
1
11
1
Y y x X
x X
Y X x y
X x
      
       
- Để hàm số là lẻ :  0 0 0
0 0
1 0 1
1;2
1 0 2
x y x
I
x y
         
Chứng tỏ đồ thị hàm số có tâm đối xứng I(1;2).
Ví dụ 2. (ĐH-NNI-99). Cho hàm số  
1
xy C
x
 
a. Khảo sát và vẽ đồ thị (C)
b. Chứng minh giao hai tiệm cận là tâm đối xứng của đồ thị (C)
GIẢI
a. Học sinh tự vẽ đồ thị (C)
b. Hàm số viết lại : 11
1
y
x
  
- Giả sử (C) có tâm đối xứng là  0 0;I x y
- Chuyển :     0
0
Oxy IXYOI
x x X
y y Y
     

- Phương trình (C) trong hệ mới là :  
 
0
0
0
0
11
1
11
1
Y y
x X
Y y
X x
    
      
www.VNMATH.com
Nguyễn Đình Sỹ- ĐT: 02403833608 Trang 4
- Để hàm số là lẻ :  0 0
0 0
1 0 1
1;1
1 0 1
y x
I
x y
          
Nhận xét : Giao hai tiệm cận là (-1;1) trùng với I . Chứng tỏ giao hai tiệm cận là tâm đối
xứng của (C).
III. Tìm tham số m để ( )mC : y=f(x;m) nhận điểm I( 0 0; )x y là tâm đối xứng .
CÁCH GIẢI
1. Nếu f(x;m) là hàm số phân thức hữu tỷ :
- Tìm tọa độ giao hai tiệm cận . Giả sử giao hai tiệm cận là J(a;b)
- Để I là tâm đối xứng thì buộc J trùng với I ta suy ra hệ : 0
0
a x
m
b y
  
2. Nếu f(x;m) là hàm số bậc ba .
- Tìm tọa độ điểm uốn :  ''( ; ) 0 ;
( ; )
y x m x a
J a b
y f x m y b
       
- Tương tự như trên , đẻ I là tâm đối xứng , ta cho J trùng vố I ta suy ra hệ : 0
0
a x
m
b y
  
Vídụ 3. Tìm m để đồ thị hàm số  3 23 2 ; 0mxy mx C mm     nhận điểm I(1;0) là tâm đối
xứng .
GIẢI
Ta có :
23 6' 6 '' 6x xy mx y m
m m
       . Cho y''=0 26 6 0; ux m x m xm      
- Tính    6 4 5 2 5; 3 . 2 2 2 ;2 2u u my y x m mm m U m mm        
- Để I là tâm đối xứng thì : cho U trùng với I :
2
55
11
1
12 2 0
mm
m
mm
           
- Vậy với m=-1 và m=1 thì I(1;0) là tâm đối xứng của đồ thị .
Ví dụ 4. (ĐH-Luật -99) .
Cho hàm số    22 4 2 1
2 m
x m x m
y C
x
    
Tìm m để đồ thị hàm số nhận điểm I(2;1) làm tâm đối xứng .
GIẢI
- Ta viết lại hàm số ; 12
2
y x m
x
    . Chứng tỏ với mọi m đồ thị luôn có tiệm cận xiên
với phương trình là : y=2x+m và tiệm cận đứng : x=2 .
- Gọi J là giao hai tiệm cận , thì J(2;m+4)
www.VNMATH.com
Nguyễn Đình Sỹ- ĐT: 02403833608 Trang 5
- Để I làm tâm đối xứng thì ta buộc J trùng với I , nghĩa là ta có hệ : 2 2 3
4 1
m
m
     
- Vậy với m=-3 thì I là tâm đối xứng của đồ thị .
Ví dụ 5.( ĐH-CĐ-2000).
Cho hàm số  3 23 3 3 4 my x x mx m C    
Tìm m để  mC nhận điểm I(1;2) làm tâm đối xứng .
GIẢI
- Tìm tọa độ điểm uốn :
Ta có : 2' 3 6 3 ; '' 6 6 '' 0 6 6 0 ; 1 uy x x m y x y x x x           
Tính    1 1 3 3 3 4 6 2; 1;6 2uy y m m m U m         
- Để I là tâm đối xứng thì : 1 1 0
6 2 2
m
m
    
- Vậy với m=0 , thì I là tâm đối xứng của đồ thị .
IV. TÌM CÁC ĐIỂM ĐỐI XỨNG NHAU TRÊN ĐỒ THỊ
Bài toán : Cho đồ thị (C) : y=f(x) , tìm trên đồ thị những cặp điểm M,N đối xứng nhau qua
điểm A hay đường th
Kết nối đề xuất:
Thành ngữ tiếng Anh có chứa die
Advertisement
Advertisement