Sách chưa phân loại, sách kiến thức Ebook download miễn phí
Nội quy chuyên mục: - Hiện nay có khá nhiều trang chia sẻ Tài liệu nhưng mất phí, đó là lý do ket-noi mở ra chuyên mục Tài liệu miễn phí.

- Ai có tài liệu gì hay, hãy đăng lên đây để chia sẻ với mọi người nhé! Bạn chia sẻ hôm nay, ngày mai mọi người sẽ chia sẻ với bạn!
Cách chia sẻ, Upload tài liệu trên ket-noi

- Những bạn nào tích cực chia sẻ tài liệu, sẽ được ưu tiên cung cấp tài liệu khi có yêu cầu.
Nhận download tài liệu miễn phí
By thuy_an1104
#674777

Download 100 bài toán ôn luyện đại học - chủ đề hình học không gian miễn phí





Bài 48: Cho hình lăng trụ lục giác đều ABCDE.A’B’C’D’E’ cạnh bên l, mặt chéo đi qua 2 cạnh đáy đối diện nhau hợp với đáy 1 góc .Tính V lăng trụ.
Bài 49: Cạnh đáy của 1 hình chóp tam giác đều bằng a; mặt bên của hình chóp tạo với mặt đáy 1 góc .Tính V khối chóp .
Bài 50: Cho 1 hình hộp chữ nhật ABCD.A’B’C’D’ có đường chéo B’D=a tạo thành với mặt phẳng đáy ABCD 1 góc bằng và tạo thành với mặt bên AA’D’D 1 góc bằng .Tính V của hình hộp chữ nhật trên.
Bài 51: Đường sinh của 1 hình nón có độ dài bằng a và tạo thành với đáy 1 góc .
Tính diện tích xung quanh và thể tích hình nón .
Bài 52: Cho hình chóp S.ABC có đáy là tam giác vuông cân ,cạnh huyền BC = a .Mặt bên SBC tạo với đáy góc .Hai mặt bên còn lại vuông góc với đáy .
1/C/m SA là đường cao của hình chóp .
2/Tính V khối chóp .
 



Để DOWNLOAD tài liệu, xin trả lời bài viết này, mình sẽ upload tài liệu cho bạn ngay

Tóm tắt nội dung:

~100 BÀI TOÁN ÔN LUYỆN ĐẠI HỌC
«CHỦ ĐỀ HÌNH HỌC KHÔNG GIAN
ÌBiên soạn :GV: NGUYỄN ĐỨC BÁ –THPT TIỂU LA THĂNG BÌNH QN
****************
ŸBài 1: Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là một tam giác vuông tại A, AC = b ,.Đường chéo BC’ của mặt bên BB’C’C tạo với mp(AA’C’C) một góc .
1/Tính độ dài đoạn AC’
2/Tính V khối lăng trụ.
ŸBài 2: Cho lăng trụ tam giác ABC.A’B’C’ có đáy ABC là một tam giác đều cạnh a và điểm A’ cách đều các điểm A,B,C.Cạnh bên AA’ tạo với mp đáy một góc .
1/Tính V khối lăng trụ.
2/C/m mặt bên BCC’B’ là một hình chữ nhật.
3/Tính hình lăng trụ.
ŸBài 3: Tính V khối tứ diện đều cạnh a.
ŸBài 4: Cho hình chóp tứ giác đều S.ABCD.
1/Biết AB =a và góc giữa mặt bên và đáy bằng ,tính V khối chóp.
2/Biết trung đoạn bằng d và góc giữa cạnh bên và đáy bằng .
Tính V khối chóp.
ŸBài 5:Cho hình chóp tam giác đều S.ABC.
1/Biết AB=a và SA=l ,tính V khối chóp.
2/Biết SA=l và góc giữa mặt bên và đáy bằng ,tính V khối chóp.
ŸBài 6: Hình chóp cụt tam giác đều có cạnh đáy lớn 2a, đáy nhỏ là a, góc giữa đường
cao với mặt bên là .Tính V khối chóp cụt .
ŸBài 7: Một hình trụ có bán kính đáy R và có thiết diện qua trục là một hình vuông.
1/Tính của hình trụ .
2/Tính V khối trụ tương ứng.
3/Tính V khối lăng trụ tứ giác đều nội tiếp trong khối trụ đã cho .
ŸBài 8: Một hình trụ có bán kính đáy R và đường cao .A và B là 2 điểm trên 2
đường tròn đáy sao cho góc hợp bởi AB và trục của hình trụ là .
1/Tính của hình trụ .
2/Tính V khối trụ tương ứng.
ŸBài 9: Thiết diện qua trục của một hình nón là một tam giác vuông cân có cạnh góc
vuông bằng a .
1/Tính của hình nón.
2/Tính V khối nón tương ứng.
ŸBài 10: Cho một tứ diện đều có cạnh là a .
1/Xác định tâm và bán kính mặt cầu ngoại tiếp tứ diện.
2/Tính S mặt cầu.
3/Tính V khối cầu tương ứng.
ŸBài 11: Cho một hình chóp tứ giác đều có cạnh đáy là a ,cạnh bên hợp với mặt đáy
một góc .
1/Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp.
2/Tính S mặt cầu
3/Tính V khối cầu tương ứng.
ŸBài 12: Cho hình nón có đường cao SO=h và bán kính đáy R. Gọi M là điểm trên
đoạn OS, đặt OM = x (0<x<h).
1/Tính S thiết diện vuông góc với trục tại M.
2/ Tính V của khối nón đỉnh O và đáy theo R ,h và x.
Xác định x sao cho V đạt giá trị lớn nhất?
ŸBài 13: Hình chóp tứ giác đều S.ABCD có cạnh đáy a, góc giữa mặt bên và đáy là
.
1/Tính bán kính các mặt cầu ngoại tiếp và nội tiếp hình chóp .
2/ Tính giá trị của để các mặt cầu này có tâm trùng nhau.
ŸBài 14: Một hình nón đỉnh S có chiều cao SH = h và đường sinh l bằng đường kính đáy.Một hình cầu có tâm là trung điểm O của đường cao SH và tiếp xúc vớ đáy hình nón .
1/Xác định giao tuyến của mặt nón và mặt cầu.
2/Tính của phần mặt nón nằm trong mặt cầu .
3/Tính S mặt cầu và so sánh với của mặt nón.
ŸBài 15: Cho lăng trụ tam giác đều ABC.A’B’C’ cạnh đáy a,góc giữa đường thẳng AB’ và mp(BB’CC’) bằng .Tính của hình lăng trụ.
ŸBài 16: Cho lăng trụ xiên ABC.A’B’C’ có đáy là tam giác đều cạnh a.Hình chiếu của A’ xuống (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC .Cho .
1/C/m BCC’B’ là hình chữ nhật .
2/Tính của hình lăng trụ.
ŸBài 17: Một hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc .
1/Tính của hình chóp.
2/C/m rằng đường cao của hình chóp bằng :
3/ Gọi O là giao điểm các đường chéo của đáy ABCD .Xác định góc để mặt cầu tâm O đi qua 5 điểm S,A,B,C,D.
ŸBài 18: Cho khối chóp tam giác đều S.ABC có đáy là tam giác đều cạnh a ,các cạnh bên tạo với đáy một góc .Tính V khối chóp đó.
ŸBài 19: Cho khối chóp S.ABC có đáy là tam giác cân ,AB=AC=5a ,BC =6a ,và các mặt bên tạo với đáy một góc .Tính V khối chóp đó.
ŸBài 20: Cho hình chóp tam giác S.ABC có đáy là tam giác vuông ở B.Cạnh SA vuông góc với đáy.Từ A kẻ các đoạn thẳng .Biết AB=a, BC=b,SA=c.
1/Tính V khối chóp S.ADE.
2/Tính khoảng cách từ E đến mp(SAB) .
ŸBài 21: Chứng minh rằng tổng các khoảng cách từ 1 điểm trong bất kỳcủa 1 tứ diện đều đến các mặt của nó là 1 số không đổi .
ŸBài 22: Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB =a,BC =2a ,AA’ =a.Lấy điểm M trên cạnh AD sao cho AM =3MD.
1/Tính V khối chóp M.AB’C
2/Tính khoảng cách từMđến mp(AB’C) .
ŸBài 23: Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB =a,BC =b ,AA’ =c.Gọi M,N theo thứ tự là trung điểm của A’B’ và B’C’.Tính tỉ số giữa thể tích khối chóp D’.DMN và thể tích khối hộp chữ nhật ABCD.A’B’C’D’ .
ŸBài 24: Cho 2 đoạn thẳng AB và CD chéo nhau ,AC là đường vuông góc chung của chúng .Biết rằng AC=h, AB =a, CD =b và góc giữa 2 đường thẳng AB và CD bằng .Tính V tứ diện ABCD.
ŸBài 25: Cho tứ diện đều ABCD.Gọi (H) là hình bát diện đều có các đỉnh là trung điểm các cạnh của tứ diện đều đó .Tính tỉ số .
ŸBài 26: Tính V khối tứ diện đều cạnh a.
ŸBài 27: Tính V khối bát diện đều cạnh a.
ŸBài 28: Cho hình hộp ABCD.A’B’C’D’ .Tính tỉ số V khói hộp đó và V khối tứ diện ACB’D’.
ŸBài 29: Cho hình chóp S.ABC.Trên các đoạn thẳng SA,SB,SC lần lượt lấy 3 điểm A’, B’, C’ khác với S .C/m :
ŸBài 30: Cho hình chóp tam giác đều S.ABC có AB=a .Các cạnh bên SA,SB,SC tạo với đáy một góc .Tính V khối chóp đó .
ŸBài 31: Cho hình chóp tam giác S.ABC có AB=5a ,BC=6a ,CA=7a.Các mặt bên SAB,SBC,SCA tạo với đáy một góc . Tính V khối chóp đó .
ŸBài 32: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật ,SA vuông góc với đáy và AB=a ,AD=b, SA =c.Lấy các điểm B’,D’ theo thứ tự thuộc SB,SD sao cho .Mặt phẳng (AB’D’) cắt SC tại C’.Tính V khối chóp đó .
ŸBài 33: Cho hình chóp tứ giác đều S.ABCD ,đáy là hình vuông cạnh a ,cạnh bên
tạo với đáy một góc . Gọi M là trung điểm SC.Mặt phẳng đi qua AM và song song với BD ,cắt SB tại E và cắt SD tại F.Tính V khối chóp S.AEMF.
ŸBài 34: Cho hình lăng trụ đứng tam giác ABC.A’B’C’ có tất cả các cạnh đều bằng a.
1/ Tính V khối tứ diện A’BB’C.
2/Mặt phẳng đi qua A’B’ và trọng tâm , cắt AC và BC lần lượt tại E và F.Tính V khối chóp C.A’B’FE.
ŸBài 35: Cho hình lập phương ABCD.A’B’C’D’.cạnh a .Gọi M là trung điểm của A’B’,N là trung điểm của BC.
1/Tính V khối tứ diện ADMN.
2/Mặt phẳng (DMN) chia khối lập phương đã cho thành 2 khối đa diện .Gọi (H) là khối đa diện chứa đỉnh A,(H’) là khối đa diện còn lại .Tính tỉ số
ŸBài 36: Cho khối chóp S.ABC có đường cao SA =a ,đáy là tam giác vuông cân có AB =BC =a. Gọi B’ là trung điểm của SB ,C’ là chân đường cao hạ từ A ...
Kết nối đề xuất:
Learn Synonym
Advertisement