Sách chưa phân loại, sách kiến thức Ebook download miễn phí
Nội quy chuyên mục: - Hiện nay có khá nhiều trang chia sẻ Tài liệu nhưng mất phí, đó là lý do ket-noi mở ra chuyên mục Tài liệu miễn phí.

- Ai có tài liệu gì hay, hãy đăng lên đây để chia sẻ với mọi người nhé! Bạn chia sẻ hôm nay, ngày mai mọi người sẽ chia sẻ với bạn!
Cách chia sẻ, Upload tài liệu trên ket-noi

- Những bạn nào tích cực chia sẻ tài liệu, sẽ được ưu tiên cung cấp tài liệu khi có yêu cầu.
Nhận download tài liệu miễn phí
By quangloc1953
#674553

Download Bài tập thể tích khối đa diện miễn phí





DẠNG 1: TÍNH THỂ TÍCH CỦA KHỐI ĐA DIỆN
*Phương pháp:Để tính thể tích của khối đa diện ta cóthể:
+Áp dụng trực tiếp các công thức tính thể tích
+Chia khối đa diện thành các khối nhỏ hơn mà thể tích của các khối đó tính được
+Bổ sung thêm bên ngoài các khối đa diện để được 1 khối đa diện có thể tính thể
tích bằng công thức và phần bù vào cũng tính được thể tích.



Để DOWNLOAD tài liệu, xin trả lời bài viết này, mình sẽ upload tài liệu cho bạn ngay

Tóm tắt nội dung:

(ABCD)) = (SA, AO) = SAO = 45o = SCO = (SC, (ABCD)) ˰ ∆ASC vuông cân
tại S ˰ SO = 121 AC ˰ VSABCD = 3331 1.3 
Bài 8: SABC có SA = SB = SC = a. ASB = 60o, BSC = 90o, CSA = 120o.
a) Chứng minh rằng ∆ABC vuông
b) Tính VSABC
GIẢI
a)
H
B
A
S
C
a





oASB
SBSA
60
˰ AB = a
-Tam giác vuông SBC có BC2 = SB2 + SC2 = 2a2
-∆SAC có AC2 = a2 + a2 -2a2cos120o = 2a2 - 2a2(- 2
1
) =3a2
-∆ABC có AC2 = AB2 + BC2˰∆ABC vuông tại B
b) Hạ SH ˵ (ABC)
Vì SA = SB = SL HA = HB = HC ˰ H là trung điểm AC
∆ABC vuông tại B
Tam giác vuông SHB có SB = a ˰ SH2 = SB2 - BH2 = 24
2 aa SH 
BH = 2
3
2
aAC 
(hay ∆SAC là nửa đều tam giác đều ˰ SH = 22 aSA  )
˰VSABC = 12261213131
23
.2..... aaABC aaSHBCABSHS 
Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến
Bài 9: SABCD có đáy ABCD là hình thang với đáy lớn AB = 2, ACB = 90o. ∆SAC và
∆SBD là các tam giác đều có cạnh = 3 .
Tính thể tích khối chóp SABCD.
Đáp số: VSABCD = 46
Bài 10: SABCD có đáy là hình thang vuông tại A và D, ∆SAD đều cạnh = 2a,
BC = 3a. Các mặt bên lập với đáy các góc bằng nhau. Tính VSABCD
GIẢI
2a
3a
CD
HK
- Hạ SH ˵ (ABCD), H ˥ (ABCD)
- Vì các mặt bên lập với đáy các góc bằng nhau nên dễ dàng chứng minh được H là tâm
đường tròn nội tiếp đáy
- Gọi K là hình chiếu của H lên AD
- Ta có HK = aAD 2
- Tam giác vuông SHK có HK = a
SK = 32 2
3 aa  (vì ∆SAD đều)
˰SH = 23 22 aaa 
Vì ⋄ABCD ngoại tiếp nên: AB + CD = AD + BC = 5a
˰SABCD = 222.52 ).( 5aaaADCDAB 
˰VSABCD = 35
2
3
1
3
1 232.5. aABCD aaSHS 
Bài 11: Cho hình chóp SABCD có ABCD là hình vuông cạnh 2a, SA = a,
SB = a 3 , (SAB)  (ABCD). M, N lần lượt là trung điểm AB, BC. Tính VSBMDN
GIẢI
Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến
S
H
15a
8a
A D
CB
S
A D
C
H
B
M
N
∆SAB hạ SH b AB ˰SH b (ABCD) ˰ SH b (BMDN)
(SAB) b (ABCD)
S∆CDN = S∆MDA = 4
1
S⋄ABCD ˰ S⋄BMDN = 21 S⋄ABCD = 21 2a.2a = 2a2
∆SAB có AB2 = SA2 + SB2 = 4a2 ˰ SAB vuông tại S
˰ 222222 3
4
3
11111
aaaSBSASH
 ˰ SH = 23a
˰VSBMDN = 3
1
S⋄BMDN.SH = 2
3
2
32
3
1 3.2 aaa 
Bài 12: SABCD có ⋄ABCD là hình thang với AB = BC = CD = 2
1
AD. ∆SBD vuông
tại S và nằm trong mặt phẳng vuông góc với đáy. SB = 8a, SD = 15a.
Tính VSABCD
GIẢI
-Trong ∆SBD kẻ SH b BD
Vì (SBD) b (ABCD)
˰SH b (ABCD)
-Tam giác vuông SBD có 222
111
SDSHSH

hay 222 225
1
64
11
aaSH

hay aaSH 1712028914400 . 
-Vì hình thang có AB = BC = CD = 2
1
AD ˰ DA ˆˆ  = 60o, B = C = 120o
-∆SBD có BD2 = SB2 +SD2 =289a2˰ BD = 17a
∆CBD có BD2 =2BC2(1+ 2
1
) = 3BC2 = 289a2 ˰ BC = a3
17
S∆BCD = 12
3289
2
32
3
289
2
12
2
1 2..120sin ao aBC 
Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến
S
A D
C
K
B
H
S⋄ABCD = 3S∆BCD = 12
3289 2a
˰VSABCD = 3
1
S⋄ABCD.SH = 17
120
12
3289
3
1 .
2 aa = 170 3 a3
Bài 13: hình chóp SACD có đáy ABCD là hình chữ nhật, ∆SCD cân tại S và nằm trong
mặt phẳng  (ABCD). ∆SAB có SA = a, ASB = 2 ỏ và nằm trong mặt phẳng lập với
(SCD) một góc ỏ. Tính thể tích khối chóp SABCD
GIẢI
Trong ∆SCD hạ SH  CD
Vì ∆SCD cân tại S
˰ H là trung điểm CD.
SH  CD
(SCD) (ABCD
˰ SH  (ABCD)
Gọi K là trung điểm AB
Ta có HK  AB
AB SH (vì SH  (ABD))
˰AB  (SKH) ˰ AB  SK ˰ ∆SAB cân tại S
Dễ thấy ((SAB), (SCD)) = KSH = ỏ
∆SAB có SK = acos ỏ , AB = 2AK = 2asin ỏ
∆SHK vuông tại H có SH =SK.cosỏ = acos2 ỏ
KH = SKsinỏ = asinỏcosỏ. SABCD =AB.BC = 2asinỏ.asinỏcosỏ
= 2a2sin2ỏcosỏ ˰VSABCD = 2332.3 1 sinaS ABCDSH  ỏ
Bài 14: Hình chóp SABCD có ∆ABC vuông tại B, SA b (ABC). ACB =60o,
BC = a, SA = a 3 , M là trung điểm SB. Tính thể tích MABC
GIẢI
H
CA
B
a
M
Cách 1.
SA b (ABC)
Từ M kẻ MH // AS cắt AB tại H ˰MH b (ABC)
Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến
Vì M trung điểm SB H- trung điểm
MH= 2
3
2
1 aSA 
S∆ABC = 3.60tan.. 2212121 aaaBCAB
o 
VMABC = 42
32
2
1
3
1
3
1 3.3.. aaABC aMHS 
Cách 2.
2
1 SBSMV
V
ASABC
MABC
VMABC = SABCV2
1
mà VSABC = 3
1 SA.S∆ABC = 63.3 32
12
2
1
3
1 aaa 
˰VMABC = 341 a
Bài 15: Hình chóp SABCD có ABCD là hình vuông tâm O, SA  (ABCD),
AB = a, SA = a 2 . H, K lần lượt là hình chiếu vuông góc của A trên SB, SD. Chứng
minh rằng: SC  (AHK) và tính thể tích hình chóp OAHK.
GIẢI
A
C
O
H
K a
a
N
F
E
B
D
a 2
S
y
x
AH  SB (gt) (1)
BC  AB (vì ABCD là hình vuông)
BC  SA (vì SA  (ABCD))
˰BC  (SAB) BC  AH (2)
Từ (1) (2) ˰AH  (SBC ˰AH  SC (3)
Chứng minh tương tự ta có: SC  AK (4)
Từ (3) (4) ˰ SC  (AKH)
Gọi {F} = KH ∩ SO ˰ (SAC) ∩ (AHK) = AF
Kéo dài AF cắt SC tại N
Trong (SAC) kẻ đường thẳng qua O//SC cắt AN tại E ˰ OE  (AHK)
Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến
Vì OA = OC; OE//CN OE = 2
1
CN
Tam giác vuông SAD có 222 111 ADASAK  ˰ AK = 323
.2.
222
a
a
aa
ADAS
ADAS 

Dễ thấy AH = 32a
∆AKH cân tại A
Dễ thấy ∆SBD có BDKHSDSK  mà SK = 2 2 2 2 223 32 aSA AK a a   
SD = a 3
˰ SOSFaaBDKH  32332
HK = 3
2 BD = 23
2 a
OF = 3
1 SO ˰ 21SFOF
∆SAC có : OA = OC
˰
2
1
SF
OF
SN
OE ˰OE =
2
1 SN =
2
1 a
S∆AHK =
2
1 KH.
4
2
2 HKAK  =
9
22 2a
˰ V = AHK.3
1
SOE
27
22 3a
* Có thể dùng PP toạ độ để tính thể tích OAHK như sau:
Chọn hệ toạ độ như hình vẽ.Ta có:
A(0,0,0) , B(a,0,0) ,D(0,a,0) , S(0,0,a 2 ) , O(
2
a ,
2
a , 0)
∆SKA  ∆ SAD ˰
SD
SA
SA
SK  ˰ SK=
3
2a
˰K(0, 2
3
a , 2
3
a )
∆ABS có SHSBAS .2  ˰ SH=
3
2a
˰H( 2
3
a ,0, 2
3
a )
Ta có )
3
2
,0,
3
2
(
a
aAH 
)
3
2
,
3
2
,0(
a
aAK 
,0)
2
,
2
(
aa
AO 
[ AKAH , ] =(
9
4
,
9
22
,
9
22 222 aaa  )
Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến
a
K
O
C
D
A a 2
a
N
I
B
˰ VOAHK=
6
1 |[ AKAH , ]. AO |= 3
27
2
a
Bài 16: Hình chóp SABCD có ABCD là hình chữ nhật, AB = a, AD = a 2 ,
SA = a, SA  (ABCD). M, N lần lượt là trung điểm AD và SC. {I} = BM ∩ AC. Tính
thể tích hình chóp ANIB.
GIẢI
SA (ABCD)
Gọi {O} = AC ∩ BD
Trong ∆SAC có ON // SA
˰ON  (ABCD) ˰ NO  (AIB)
Ta có NO = 22
1 aSA 
Tính S∆AIB = ?
ABD só I là trọng tâm
˰S∆ABI = 32 S∆ABO = 4132 . S⋄ABCD = 32 a.a 2 = 6
22a
˰ SANIB = 31 NO.S∆AIB = 3626 2231
32
.. aaa 
Bài 17. Hình chóp SABCD có đáy ABCD là hình vuông cạnh a,
(SAD) (ABCD), ∆SAD đều. Gọi M, N, P lần lượt là trung điểm SB, BC, CD.
Tính thể tích hình chóp CMNP
GIẢI
A
C
N
a
D
P
B
M
FE
S
y
x
z
- Gọi E là trung điểm AD. (CNP) ≡ (ABCD) ˰ SE AD
(SAD)  (ABCD)
˰SE  (ABCD)
- Gọi F là hình chiếu của M lên (ABCD) ˰ MF // SE. Dễ thấy F ˥ EB và F là trung
điểm EB
Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến
Ta có MF = 2
1 SE = 4
3
2
3
2
1 . aa 
S∆CNP =
2
8
1
8
1
4
1 aSS ABCDCBD 
VCMNP = 2
1 S∆NCP.MF = 96
3
4
32
8
1
3
1 3. aaa 
Nhận xét: có thể dùng phương pháp toạ độ để giải với gốc toạ độ O .
0x ≡ EN, oy ≡ ED, oz ≡ ES
Bài 18: Cho hình trụ có các đáy là hai hình tròn tâm O và O’ bán kính đáy bằng chiều
cao bằng a. Trên đường tròn tâm O lấy A, Trên đường tròn tâm O’ lấy B. sao cho AB =
2a. Tính thể tích hình chóp OO’AB
GIẢI
B
A
A'
O'
O
H
D
Kẻ đường sinh AA’. Gọi D đối xứng với A’ qua O’, H là hình chiếu của B trên
A’D.
Ta có BH A’D
BH  A’A
˰ BH  (AOO’A’)
˰BH là đường cao của tứ diện BAOO’
SAOO’ =
2
2a , A’B = 3'22 aAAAB 
∆A’BD vuông ở B ˰ BD=a
∆O’BD đều ˰ BH=
2
3a ˰VBAOO’ = .
3
1
BH SAOO’ = 12
32a
Bài 19: Cho hình chóp có ABCD là hình chữ nhật; AB = a.AD = 2a;
SA  (ABCD); (SA, (ABCD) = 60o. Điểm M thuộc cạnh SA, AM = 3 3a .
(BCM) ∩ SD ={ N}. Tính thể tích hình chóp S.BCMN
GIẢI...
Kết nối đề xuất:
Thành ngữ tiếng Anh có chứa die
Advertisement
Advertisement