Sách chưa phân loại, sách kiến thức Ebook download miễn phí
Nội quy chuyên mục: - Hiện nay có khá nhiều trang chia sẻ Tài liệu nhưng mất phí, đó là lý do ket-noi mở ra chuyên mục Tài liệu miễn phí.

- Ai có tài liệu gì hay, hãy đăng lên đây để chia sẻ với mọi người nhé! Bạn chia sẻ hôm nay, ngày mai mọi người sẽ chia sẻ với bạn!
Cách chia sẻ, Upload tài liệu trên ket-noi

- Những bạn nào tích cực chia sẻ tài liệu, sẽ được ưu tiên cung cấp tài liệu khi có yêu cầu.
Nhận download tài liệu miễn phí
By MV_R
#670795

Download Tiểu luận Phương pháp thu thập dữ liệu sơ cấp trong nghiên cứu các hiện tượng kinh tế xã hội miễn phí





Thang đo xếp hạng theo thứ tự:
Đưa ra nhiều đối tượng cùng một lần và tạo ra sự xếp hạng thứ tự giữa chúng về một đặc điểm nào đó. Ví dụ: Hãy xếp hạng theo thứ tự từ 1 đến 5 cho 5 nhãn hiệu dầu gội sau đây về tác dụng đem lại sự bóng mượt cho tóc (số 1 là tốt nhất, số 5 là xấu nhất)
Người trả lời phải phân biệt sự hơn kém giữa các đối tượng, tốn ít thời gian hơn, dễ trả lời hơn (ở ví dụ trên, nếu là so sánh cặp thì người trả lời phải có 10 lần xếp hạng theo từng cặp). Tuy nhiên chỉ có thể áp dụng kỹ thuật này đối với dữ liệu có thể xếp theo thứ tự. Người trả lời thường chú ý đến những xếp hạng đầu và cuối, hơn là các xếp hạng ở giữa. Nếu người trả lời không có sẵn ý thích so sánh giữa các đối tượng thì câu trả lời của họ sẽ không có ý nghĩa. Không thể biết được lý do vì sao người trả lời xếp hạng như vậy.
 



Để DOWNLOAD tài liệu, xin trả lời bài viết này, mình sẽ upload tài liệu cho bạn ngay

Tóm tắt nội dung:

hông tiếp xúc được với người cần hỏi vì họ không có mặt hay họ không có điện thoại.
Đi sâu vào phương pháp chọn mẫu ta có 2 phương pháp chọn mẫu cơ bản là :
1-Phương pháp chọn mẫu ngẫu nhiên (probability sampling methods):
Chọn mẫu ngẫu nhiên (hay chọn mẫu xác suất) là phương pháp chọn mẫu mà khả năng được chọn vào tổng thể mẫu của tất cả các đơn vị của tổng thể đều như nhau. Đây là phương pháp tốt nhất để ta có thể chọn ra một mẫu có khả năng đại biểu cho tổng thể. Vì có thể tính được sai số do chọn mẫu, nhờ đó ta có thể áp dụng được các phương pháp ước lượng thống kê, kiểm định giả thuyết thống kê trong xử lý dữ liệu để suy rộng kết quả trên mẫu cho tổng thể chung
Tuy nhiên ta khó áp dụng phương pháp này khi không xác định được danh sách cụ thể của tổng thể chung (ví dụ nghiên cứu trên tổng thể tiềm ẩn); tốn kém nhiều thời gian, chi phí, nhân lực cho việc thu thập dữ liệu khi đối tượng phân tán trên nhiều địa bàn cách xa nhau,…
*Các phương pháp chọn mẫu ngẫu nhiên:
Chọn mẫu ngẫu nhiên đơn giản (simple random sampling):
Trước tiên lập danh sách các đơn vị của tổng thể chung theo một trật tự nào đó : lập theo vần của tên, hay theo quy mô, hay theo địa chỉ…, sau đó đánh số thứ tự các đơn vị trong danh sách; rồi rút thăm, quay số, dùng bảng số ngẫu nhiên, hay dùng máy tính để chọn ra từng đơn vị trong tổng thể chung vào mẫu.
Thường vận dụng khi các đơn vị của tổng thể chung không phân bố quá rộng về mặt địa lý, các đơn vị khá đồng đều nhau về đặc điểm đang nghiên cứu. Thường áp dụng trong kiểm tra chất lượng sản phẩm trong các dây chuyền sản xuất hàng loạt.
Chọn mẫu ngẫu nhiên hệ thống(systematic sampling):
Trước tiên lập danh sách các đơn vị của tổng thể chung theo một trật tự quy ước nào đó, sau đó đánh số thứ tự các đơn vị trong danh sách. Đầu tiên chọn ngẫu nhiên 1 đơn vị trong danh sách ; sau đó cứ cách đều k đơn vị lại chọn ra 1 đơn vị vào mẫu,…cứ như thế cho đến khi chọn đủ số đơn vị của mẫu. Ví dụ : Dựa vào danh sách bầu cử tại 1 thành phố, ta có danh sách theo thứ tự vần của tên chủ hộ, bao gồm 240.000 hộ. Ta muốn chọn ra một mẫu có 2000 hộ. Vậy khoảng cách chọn là : k= 240000/2000 = 120, có nghĩa là cứ cách 120 hộ thì ta chọn một hộ vào mẫu.
Chọn mẫu cả khối (cluster sampling):
Trước tiên lập danh sách tổng thể chung theo từng khối (như làng, xã, phường, lượng sản phẩm sản xuất trong 1 khoảng thời gian…). Sau đó, ta chọn ngẫu nhiên một số khối và điều tra tất cả các đơn vị trong khối đã chọn. Thường dùng phương pháp này khi không có sẵn danh sách đầy đủ của các đơn vị trong tổng thể cần nghiên cứu. Ví dụ : Tổng thể chung là sinh viên của một trường đại học. Khi đó ta sẽ lập danh sách các lớp chứ không lập danh sách sinh viên, sau đó chọn ra các lớp để điều tra.
Chọn mẫu phân tầng (stratified sampling):
Trước tiên phân chia tổng thể thành các tổ theo 1 tiêu thức hay nhiều tiêu thức có liên quan đến mục đích nghiên cứu (như phân tổ các DN theo vùng, theo khu vực, theo loại hình, theo quy mô,…). Sau đó trong từng tổ, dùng cách chọn mẫu ngẫu nhiên đơn giản hay chọn mẫu hệ thống để chọn ra các đơn vị của mẫu. Đối với chọn mẫu phân tầng, số đơn vị chọn ra ở mỗi tổ có thể tuân theo tỷ lệ số đơn vị tổ đó chiếm trong tổng thể, hay có thể không tuân theo tỷ lệ. Ví dụ : Một toà soạn báo muốn tiến hành nghiên cứu trên một mẫu 1000 doanh nghiệp trên cả nước về sự quan tâm của họ đối với tờ báo nhằm tiếp thị việc đưa thông tin quảng cáo trên báo. Toà soạn có thể căn cứ vào các tiêu thức : vùng địa lý (miền Bắc, miền Trung, miền Nam) ; hình thức sở hữu (quốc doanh, ngoài quốc doanh, công ty 100% vốn nước ngoài,…) để quyết định cơ cấu của mẫu nghiên cứu.
Chọn mẫu nhiều giai đoạn (multi-stage sampling):
Phương pháp này thường áp dụng đối với tổng thể chung có quy mô quá lớn và địa bàn nghiên cứu quá rộng. Việc chọn mẫu phải trải qua nhiều giai đoạn (nhiều cấp). Trước tiên phân chia tổng thể chung thành các đơn vị cấp I, rồi chọn các đơn vị mẫu cấp I. Tiếp đến phân chia mỗi đơn vị mẫu cấp I thành các đơn vị cấp II, rồi chọn các đơn vị mẫu cấp II…Trong mỗi cấp có thể áp dụng các cách chọn mẫu ngẫu nhiên đơn giản, chọn mẫu hệ thống, chọn mẫu phân tầng, chọn mẫu cả khối để chọn ra các đơn vị mẫu. Ví dụ :Muốn chọn ngẫu nhiên 50 hộ từ một thành phố có 10 khu phố, mỗi khu phố có 50 hộ. Cách tiến hành như sau : Trước tiên đánh số thứ tự các khu phố từ 1 đến 10, chọn ngẫu nhiên trong đó 5 khu phố. Đánh số thứ tự các hộ trong từng khu phố được chọn. Chọn ngẫu nhiên ra 10 hộ trong mỗi khu phố ta sẽ có đủ mẫu cần thiết.
2-Phuơng pháp chọn mẫu phi ngẫu nhiên (non-probability sampling methods):
Chọn mẫu phi ngẫu nhiên (hay chọn mẫu phi xác suất) là phương pháp chọn mẫu mà các đơn vị trong tổng thể chung không có khả năng ngang nhau để được chọn vào mẫu nghiên cứu. Chẳng hạn : Ta tiến hành phỏng vấn các bà nội trợ tới mua hàng tại siêu thị tại một thời điểm nào đó ; như vậy sẽ có rất nhiều bà nội trợ do không tới mua hàng tại thời điểm đó nên sẽ không có khả năng được chọn
Việc chọn mẫu phi ngẫu nhiên hoàn toàn phụ thuộc vào kinh nghiệm và sự hiểu biết về tổng thể của người nghiên cứu nên kết quả điều tra thường mang tính chủ quan của người nghiên cứu. Mặt khác, ta không thể tính được sai số do chọn mẫu, do đó không thể áp dụng phương pháp ước lượng thống kê để suy rộng kết quả trên mẫu cho tổng thể chung
Các phương pháp chọn mẫu phi ngẫu nhiên:
Chọn mẫu thuận tiện (convenience sampling):
Có nghĩa là lấy mẫu dựa trên sự thuận lợi hay dựa trên tính dễ tiếp cận của đối tượng, ở những nơi mà nhân viên điều tra có nhiều khả năng gặp được đối tượng. Chẳng hạn nhân viên điều tra có thể chặn bất cứ người nào mà họ gặp ở trung tâm thương mại, đường phố, cửa hàng,.. để xin thực hiện cuộc phỏng vấn. Nếu người được phỏng vấn không đồng ý thì họ chuyển sang đối tượng khác. Lấy mẫu thuận tiện thường được dùng trong nghiên cứu khám phá, để xác định ý nghĩa thực tiễn của vấn đề nghiên cứu; hay để kiểm tra trước bảng câu hỏi nhằm hoàn chỉnh bảng; hay khi muốn ước lượng sơ bộ về vấn đề đang quan tâm mà không muốn mất nhiều thời gian và chi phí.
Chọn mẫu phán đoán (judgement sampling):
Là phương pháp mà phỏng vấn viên là người tự đưa ra phán đoán về đối tượng cần chọn vào mẫu. Như vậy tính thay mặt của mẫu phụ thuộc nhiều vào kinh nghiệm và sự hiểu biết của người tổ chức việc điều tra và cả người đi thu thập dữ liệu. Chẳng hạn, nhân viên phỏng vấn được yêu cầu đến các trung tâm thương mại chọn các phụ nữ ăn mặc sang trọng để phỏng vấn. Như vậy không có tiêu chuẩn cụ thể “thế nào là sang trọng” mà hoàn toàn dựa vào phán đoán để chọn ra người cần phỏng vấn.
Chọn mẫu định ngạch (quota sampling):
Đối với phương pháp chọn mẫu này, trước tiên ta tiến hành phân tổ t
Kết nối đề xuất:
Learn Synonym
Advertisement