Sách chưa phân loại, sách kiến thức Ebook download miễn phí
Nội quy chuyên mục: - Hiện nay có khá nhiều trang chia sẻ Tài liệu nhưng mất phí, đó là lý do Ketnooi mở ra chuyên mục Tài liệu miễn phí.

- Ai có tài liệu gì hay, hãy đăng lên đây để chia sẻ với mọi người nhé! Bạn chia sẻ hôm nay, ngày mai mọi người sẽ chia sẻ với bạn!
Cách chia sẻ, Upload tài liệu trên Ketnooi

- Những bạn nào tích cực chia sẻ tài liệu, sẽ được ưu tiên cung cấp tài liệu khi có yêu cầu.
Nhận download tài liệu miễn phí
By cun_con_online27
#644573 Link tải luận văn miễn phí cho ae Kết nối
CHƯƠNG 1: MÔ HÌNH NEURAL NETWORK
TRONG DỰ BÁO TÀI CHÍNH
1.1. GIỚI THIỆU SƠ LƯỢC VỀ MÔ HÌNH NEURAL NETWORK
Neural Network trong một vài năm trở lại đây đã được nhiều người quan tâm và
đã áp dụng thành công trong nhiều lĩnh vực khác nhau, như tài chính, y tế, địa chất
và vật lý. Thật vậy, bất cứ ở đâu có vấn đề về dự báo, phân loại và điều khiển,
Neural Network đều có thể ứng dụng được. Sự thành công nhanh chóng của mạng
Neural Network có thể là do một số nhân tố chính sau:
 Năng lực : Neural Network là những kỹ thuật mô phỏng rất tinh vi, có khả
năng mô phỏng các hàm cực kỳ phức tạp. Đặc biệt, Neural Network hoạt
động phi tuyến. Trong nhiều năm, mô hình tuyến tính là kỹ thuật được sử
dụng rộng rãi trong hầu hết các lĩnh vực, vì thế mô hình tuyến tính có tính
chiến lược tối ưu hóa được biết nhiều nhất.
 Dễ sử dụng : Neural Network có tính học theo các ví dụ. Người sử dụng
Neural Network thu thập các dữ liệu đặc trưng, và sau đó gọi các thuật toán
huấn luyện để có thể tự học cấu trúc của dữ liệu. Mặc dù người sử dụng
làm tất cả những điều cần thiết để có thể chọn và chuẩn bị dữ liệu, sử dụng
loại mạng phù hợp và có thể hiểu được các kết quả, nhưng mức độ người sử
dụng biết cách áp dụng thành công Neural Network vẫn thấp hơn nhiều
những người sử dụng các phương pháp thống kê truyền thống…
1.2. NỀN TẢNG CỦA MÔ HÌNH NEURAL NETWORK
Neural Network phát triển từ nghiên cứu về trí tuệ nhân tạo; đặc biệt cố gắng bắt
chước bộ não có cấu trúc cấp thấp về khả năng học và chấp nhận sai của hệ thống
neuron sinh học. Bộ não con người gồm một số rất lớn neuron (khoảng
10.000.000.000 neuron) kết nối với nhau (trung bình mỗi neuron kết nối với hàng
chục ngàn neuron khác). Mỗi neuron là một tế bào đặc biệt, có thể truyền các tín
hiệu điện. Neuron có cấu trúc rễ ngõ vào, thân tế bào và cấu trúc rễ ngõ ra (sợi
Tóm tắt đề tài
Danh mục các hình
Chương 1: Mô hình Neural Network trong dự báo tài chính
1.1. Giới thiệu sơ lược về mô hình Neural Network . . 1
1.2. Nền tảng của mô hình Neural Network . . 1
1.3. Hoạt động của một Neural Network . . 2
1.4. Các mô hình mạng Neural Network . . 3
1.4.1. Các dạng mô hình Neuron . . 4
Mô hình cấu trúc một Neuron . . 4
Mô hình Neuron với vectơ nhập . . 4
1.4.2 Các dạng mô hình . . . 5
Mô hình mạng một lớp Neuron . . 5
Mô hình mạng nhiều lớp Neuron . . 7
1.5. Mô hình Backpropagation Neural Network . . 7
1.5.1. Hoạt động của mạng Backpropagation . . 7
1.5.2. Các thông số phổ biến trong thiết kế một Backpropagation . 8
1.5.3 Mục đích, công dụng của mô hình Neural Network . 9
Chương 2: Các bước thiết kế một mô hình dự báo Neural Network
2.1. Sơ lược về việc thiết kế mô hình dự báo Neural Network . 11
2.2. Quá trình lựa chọn các biến số . . 11
2.3. Quá trình thu thập dữ liệu . . . 13
2.4. Quá trình xử lý và phân tích dữ liệu . . 13
2.5. Phân chia dữ liệu cho từng giai đoạn: huấn luyện,
kiểm tra và công nhận . . . 16
2.6. Xác định các thông số cho Neural Network . . 18
2.6.1. Tính toán số lượng các lớp ẩn . . 18
2.6.2. Tính toán số lượng các neuron ẩn. . 19
2.6.3. Tính toán số lượng các neuron đầu ra . . 21
2.6.4. Xác định loại hàm truyền . . 21
2.7. Xác định tiêu chuẩn đánh giá kết quả . . 22
2.8. Lựa chọn kiểu huấn luyện mô hình Neural Network. 23
2.8.1. Xác định thông số lặp lại quá trình huấn luyện . 23
2.8.2. Lựa chọn learning rate và momentum . . 26
2.9. Tiến hành thực hiện mô hình . . . 27
Chương 3: Ứng dụng Neural Network vào thị trường tài chính Việt Nam
3.1. Dự báo kinh tế Việt Nam 2008 . . 29
3.1.1. Lạm phát . . . 30
3.1.2. Tỷ giá hối đoái . . . 30
3.1.3. Kinh tế đoái ngoại . . . 31
3.2. Lựa chọn phần mềm xử lý mô hình . . 31
3.3. Cách thức thu thập và xử lý dữ liệu thô . . 33
3.3.1. Các nhân tố ảnh hưởng thị trường chứng khoán Việt Nam . 33
3.3.2. Cách thức thu thập và điều chỉnh dữ liệu đầu vào . 34
3.3.3. Tổ chức file dữ liệu . . . 36
3.3.4. Phân tích các biến đầu vào bằng Data Manager . 36
3.4. Quá trình xử lý mô hình và phân tích kết quả . . 37
3.4.1. Cách thực hiện chạy chương trình Neuro Solutions . 37
3.4.2. Kết quả nhận từ phần mềm Neuro Solutions . . 38
3.4.3. Kết quả dự báo VN-INDEX từ tháng 4/2008 đến tháng 5/2008. 39
3.4.4. Phân tích kết quả . . . 39
3.5. Chứng cứ ứng dụng mô hình Neural Network . . 40
3.5.1. Jason E.Kutsurelis ứng dụng mô hình Neural Network
để dự báo S&P 500 . . . 40
3.5.2. Trường hợp 1: Đầu cơ giá lên từ tháng 1 năm 1994 . 41
3.5.3. Trường hợp 2: Sự sụp đổ vào tháng 10 năm 1986 . 44
3.5.4. Kết quả thử nghiệm cho cả hai trường hợp . . 47
Kết luận
Tài liệu tham khảo
Phụ lục

Link Download bản DOC
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link tải, không dùng IDM để tải:

Bấm vào đây để đăng nhập và xem link!
Hình đại diện của thành viên
By daigai
#1013707 đây là luận văn đâu phải ứng dụng đâu?
Link mới update, mời bạn xem lại bài đầu để tải
Kết nối đề xuất:
Đọc Truyện online