Sách chưa phân loại, sách kiến thức Ebook download miễn phí
Nội quy chuyên mục: - Hiện nay có khá nhiều trang chia sẻ Tài liệu nhưng mất phí, đó là lý do ket-noi mở ra chuyên mục Tài liệu miễn phí.

- Ai có tài liệu gì hay, hãy đăng lên đây để chia sẻ với mọi người nhé! Bạn chia sẻ hôm nay, ngày mai mọi người sẽ chia sẻ với bạn!
Cách chia sẻ, Upload tài liệu trên ket-noi

- Những bạn nào tích cực chia sẻ tài liệu, sẽ được ưu tiên cung cấp tài liệu khi có yêu cầu.
Nhận download tài liệu miễn phí
By dinhxuanthoai_swg
#642588

Download Luyện thi Đại học - chuyên đề khảo sát hàm số miễn phí





Câu 22. Cho hàm số y = -x^3 +3x^2 - 4 (1)
1.Khảo sát sựbiến thiên và vẽ ñồthị(C) của hàm số(1)
2. Giảsử A, B ,C là ba ñiểm thẳng hàng thuộc ñồthị(C),
tiếp tuyến với (C) tại A, B ,C tương ứng cắt lại (C) tại
A', B', C . Chứng minh rằng ba ñiểm
A, B ,C thẳng
hàng.
Câu 23. Cho hàm số y = x^3 - 3x + 1
1)Khảo sát sựbiến thiên và vẽ ñồthị(C) của hàm số(1).
2)ðường thẳng ( ∆ ): y = mx+1 (C) tại ba ñiểm. Gọi
A và B là hai ñiểm có hoành ñộkhác 0 trong ba ñiểm nói
ởtrên; gọi D là ñiểm cực tiểu của (C). Tìm m ñểgóc
ADB là góc vuông



++ Để DOWNLOAD tài liệu, xin trả lời bài viết này, mình sẽ upload tài liệu cho bạn ngay!

Tóm tắt nội dung:

m phân biệt và y’ ñổi dấu khi x ñi qua hai nghiệm ñó

0
0
a ≠
∆ >
C
www.VNMATH.com
Chuyªn ®Ò luyÖn thi ®¹i häc-phÇn i: kh¶o s¸t hµm sè Năm học: 2000- 2011
Cách học tốt môn Toán là phải làm nhiều , bên cạnh ñó ,d ( hehe...a )
Trang2/10-LTðH-2010
Baøi taäp
Dạng 4: Cho hàm số y = f(x) có chứa tham số m. Chứng
minh rằng với mọi m ñồ thị hàm số luôn luôn có cực trị?
Phương pháp:
TXð: D = ℝ
Ta có: y’ = ax2 + bx + c
Xét phương trình y’ = 0, ta có:
∆ =….>0, ∀m
Vậy với mọi m ñồ thị hàm số ñã cho luôn luôn có cực trị.
Dạng 5: Cho hàm số y = f(x) có chứa tham số m. ðịnh m
ñể ñồ thị hàm số không có cực trị?
Phương pháp:
TXð: D = ℝ
Ta có: y’ = ax2 + bx + c
Hàm số không có cực trị khi y’ không ñổi dấu trên toàn
tập xác ñịnh
0
0
a ≠
⇔ ∆ ≤
Dạng 6: Cho hàm số y = f(x) có chứa tham số m. ðịnh m
ñể ñồ thị hàm số ñạt cực ñại tại x0?
Phương pháp:
TXð: D = ℝ
Ta có: y’ = ax2 + bx + c
ðể hàm số ñạt cực ñại tại x0 thì
0
0
'( ) 0
''( ) 0
f x
f x
=

<
Dạng 7: Cho hàm số y = f(x) có chứa tham số m. ðịnh m
ñể ñồ thị hàm số ñạt cực tiểu tại x0?
Phương pháp:
TXð: D = ℝ
Ta có: y’ = ax2 + bx + c
ðể hàm số ñạt cực tiểu tại x0 thì
0
0
'( ) 0
''( ) 0
f x
f x
=

>
Dạng 8: Cho hàm số y = f(x) có chứa tham số m. ðịnh m
ñể ñồ thị hàm số ñạt cực trị bằng h tại x0?
Phương pháp: TXð: D = ℝ
Ta có: y’ = ax2 + bx + c
ðể hàm số ñạt cực trị bằng h tại x0 thì
0
0
'( ) 0
( )
f x
f x h
=

=
Dạng 9: Cho hàm số y = f(x) có chứa tham số m. ðịnh m
ñể ñồ thị hàm số ñi qua ñiểm cực trị M(x0;y0)?
Phương pháp:
TXð: D = ℝ
Ta có: y’ = ax2 + bx + c
ðể hàm số ñi qua ñiểm cực trị M(x0;y0) thì 0
0 0
'( ) 0
( )
f x
f x y
=

=
Dạng 10: Cho hàm số y = f(x) có ñồ thị (C) và
M(x0;y0)∈(C). Viết PTTT tại ñiểm M(x0;y0) ?
Phương pháp:
Ta có: y’ = f’(x) ⇒ f’(x0)
Phương trình tiếp tuyến tại ñiểm M(x0;y0) là
y – y0 = f’(x0).( x – x0 )
Các dạng thường gặp khác :
1/ Viết phương trình tiếp tuyến với ñồ thị (C) tại ñiểm có
hòanh ñộ x0.
Ta tìm: + y0 = f(x0)
+ f’(x) ⇒ f’(x0)
Suy ra phương trình tiếp tuyến cần tìm là
y – y0 = f’(x0).( x – x0 )
2/ Viết phương trình tiếp tuyến với ñồ thị (C) tại ñiểm
thỏa mãn phương trình f”(x)= 0.
Ta tìm: + f’(x)
+ f”(x)
+Giải phương trình f”(x) = 0⇒ x0
+ y0 và f’(x0). Suy ra PTTT.
Dạng 11: Cho hàm số y = f(x) có ñồ thị (C) Viết phương
trình tiếp tuyến (d) của (C)
a/ song song với ñường thẳng y = ax + b.
b/ vuông góc với ñường thẳng y = ax + b.
Phương pháp:
a/ Tính: y’ = f’(x)
Vì tiếp tuyến (d) song song với ñường thẳng y = ax + b
nên (d) có hệ số góc bằng a.
Ta có: f’(x) = a (Nghiệm của phương trình này chính là
hoành ñộ tiếp ñiểm)
Tính y0 tương ứng với mỗi x0 tìm ñược.
Suy ra tiếp tuyến cần tìm (d):
y – y0 = a. ( x – x0 )
www.VNMATH.com
Chuyªn ®Ò luyÖn thi ®¹i häc-phÇn i: kh¶o s¸t hµm sè Năm học: 2000- 2011
Cách học tốt môn Toán là phải làm nhiều , bên cạnh ñó ,d ( hehe...a )
Trang3/10-LTðH-2010
Baøi taäp
b/ Tính: y’ = f’(x)
Vì tiếp tuyến (d) vuông góc với ñường thẳng y = ax + b
nên (d) có hệ số góc bằng 1
a
− .
Ta có: f’(x) = 1
a
− (Nghiệm của phương trình này chính
là hoành ñộ tiếp ñiểm)
Tính y0 tương ứng với mỗi x0 tìm ñược.
Suy ra tiếp tuyến cần tìm (d):
y – y0 =
1
a
− . ( x – x0 )
Chú ý:
+ ðường phân giác của góc phần tư thứ nhất y = x.
+ ðường phân giác của góc phần tư thứ hai y = - x.
Dạng 12: Cho hàm số y = f(x) có ñồ thị (C) Tìm GTLN,
GTNN của hàm số trên [a;b]
Phương pháp:
Ta có: y’ = f’(x)
Giải phương trình f’(x) = 0, ta ñược các ñiểm cực trị: x1,
x2, x3,…∈ [a;b]
Tính: f(a), f(b), f(x1), f(x2), f(x3),…
Từ ñó suy ra: [ ] [ ]; ;ax ; ina b a bm y m y= =
Phương pháp chung ta thường lập BBT
Dạng 13: Cho họ ñường cong y = f(m,x) với m là tham
số.Tìm ñiểm cố ñịnh mà họ ñường cong trên ñi qua với
mọi giá trị của m.
Phương pháp:
Ta có: y = f(m,x)
⇔ Am + B = 0, ∀m (1)
hay Am2 + Bm + C = 0, ∀m (2)
ðồ thị hàm số (1) luôn luôn ñi qua ñiểm M(x;y) khi (x;y)
là nghiệm của hệ phương trình:
0
0
A
B
=

=
(a) (ñối với (1))
hay
0
0
0
A
B
C
=

=

=
(b) (ñối với (2))
Giải (a) hay (b) ñể tìm x rồi→ y tương ứng.
Từ ñó kết luận các ñiểm cố ñịnh cần tìm.
Dạng 14: Giả sử (C1) là ñồ thị của hàm số y = f(x) và
(C2) là ñồ thị của hàm số y = g(x). Biện luận số
giao ñiểm của hai ñồ thị (C1), (C2).
Phương pháp:
Phương trình hoành ñộ giao ñiểm của y = f(x) và
y = g(x) là
f(x) = g(x)
⇔ f(x) – g(x) = 0 (*)
Số giao ñiểm của hai ñồ thị (C1), (C2) chính là số nghiệm
của phương trình (*).
Dạng 15: Dựa vào ñồ thị hàm số y = f(x), biện luận theo
m số nghiệm của phương trình f(x) + g(m) = 0
Phương pháp:
Ta có: f(x) + g(m) = 0
⇔ f(x) = g(m) (*)
Số nghiệm của (*) chính là số giao ñiểm của ñồ thị (C): y
= f(x) và ñường g(m).
Dựa vào ñồ thị (C), ta có:…v.v…
Dạng 16: Cho hàm số y = f(x), có ñồ thị (C). CMR ñiểm
I(x0;y0) là tâm ñối xứng của (C).
Phương pháp:
Tịnh tiến hệ trục Oxy thành hệ trục OXY theo vectơ
( )0 0;OI x y=

.
Công thức ñổi trục: 0
0
x X x
y Y y
= +

= +
2
3
xy
x
+
=

Thế vào y = f(x) ta ñược Y = f(X)
Ta cần chứng minh hàm số Y = f(X) là hàm số lẻ. Suy ra
I(x0;y0) là tâm ñối xứng của (C).
Dạng 17: Cho hàm số y = f(x), có ñồ thị (C). CMR ñường
thẳng x = x0 là trục ñối xứng của (C).
Phương pháp:
ðổi trục bằng tịnh tiến theo vectơ ( )0;0OI x=

Công thức ñổi trục 0
x X x
y Y
= +

=
Thế vào y = f(x) ta ñược Y = f(X)
Ta cần chứng minh hàm số Y = f(X) là hàm số chẵn. Suy
ra ñường thẳng x = x0 là trục ñối xứng của (C).
www.VNMATH.com
Chuyªn ®Ò luyÖn thi ®¹i häc-phÇn i: kh¶o s¸t hµm sè Năm học: 2000- 2011
Cách học tốt môn Toán là phải làm nhiều , bên cạnh ñó ,d ( hehe...a )
Trang4/10-LTðH-2010
Baøi taäp
Dạng 18: Sự tiếp xúc của hai ñường cong có phương trình
y = f(x) và y = g(x).
Phương pháp:
Hai ñường cong y = f(x) và y = g(x) tiếp xúc với nhau khi
và chỉ khi hệ phương trình
( ) ( )
'( ) '( )
f x g x
f x g x
=

=
Có nghiệm và nghiệm của hệ phương trình trên là hoành
ñộ tiếp ñiểm của hai ñường cong ñó.
Dạng 19: Tìm ñiểm A ,từ A kẻ ñc n tiếp tuyến tới ñồ
thị )(xfy = (C)
Phương pháp
+Giả sử ( )00 , yxA
+ Pt ñthẳng ñi qua ( )00 , yxA có hệ số góc k có dạng :
( ) ( ) 00: yxxkyd +−=
+ðthẳng (d) tiếp xúc vớI ñồ thị (C) khi hệ sau có nghiệm
( ) ( )
( )

=
+−=
)2(
)1(
'
00
kxf
yxxkxf
Thay (2) vào (1) ñược : ( ) ( )( ) 00' yxxxfxf +−= (3)
+Khi ñó số nghiệm phân biệt của (3) là số tiếp tuyến kẻ từ
A tớI ñồ thị (C)
Do ñó từ A kẻ ñược k tiếp tuyến tớI ñồ thị (C)
⇔ có k nghiệm phân biệt ⇒ ñiểm A (nếu có)
Dạng 20: ðịnh ñkiện ñể ñồ thị hàm số bậc 3 có Cð ,
CT nằm về 2 phía (D)
Phương pháp +ðịnh ñkiện ñể ñồ thị hàm số bậc 3 có các
ñiểm cực trị ( ) ),(&, 222111 yxMyxM
( 21 , xx là nghiệm của pt y' = 0)
1)Nếu (D) là trục Oy thì ycbt 21 0 xx <<⇔
2)Nếu (D) là ñthẳng x = m thì ycbt 21 0 xx <<⇔
3)Nếu (D) là ñthẳng 0=++ cbyax thì: ...

Lưu ý khi sử dụng

- Gặp Link download hỏng, hãy đăng trả lời (yêu cầu link download mới), Các MOD sẽ cập nhật link sớm nhất
- Tìm kiếm trước khi đăng bài mới

Chủ đề liên quan:
Kết nối đề xuất:
Learn Synonym
Advertisement