Sách chưa phân loại, sách kiến thức Ebook download miễn phí
Nội quy chuyên mục: - Hiện nay có khá nhiều trang chia sẻ Tài liệu nhưng mất phí, đó là lý do ket-noi mở ra chuyên mục Tài liệu miễn phí.

- Ai có tài liệu gì hay, hãy đăng lên đây để chia sẻ với mọi người nhé! Bạn chia sẻ hôm nay, ngày mai mọi người sẽ chia sẻ với bạn!
Cách chia sẻ, Upload tài liệu trên ket-noi

- Những bạn nào tích cực chia sẻ tài liệu, sẽ được ưu tiên cung cấp tài liệu khi có yêu cầu.
Nhận download tài liệu miễn phí
By heocondethuongk2410
#642574

Download Chuyên đề Toán 6 miễn phí





1.BCNN của hai hay nhiều số là số nhỏ nhất khác o trong tập hợp các bội chung của các số đó.
2. Muốn tìm BCNN của hai hay nhiều số , ta thực hiện 3 bước sau:
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn các thừa số nguyên tố chung và riêng.
Bước 3: Lập tích các thừa số đó , mỗi thừa số lấy với số mũ lớn nhất của nó.tích đó là BCNN phải tìm.
Chú ý: Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó.
Trong các số đã cho nếu số lơn nhất là bội của các số còn lại thì BCNN của các số đã cho là số lơn nhất đó.
3.Muốn tìm bôi chung của hai hay nhiều số , ta tìm các bội của BCNN của các số đó.
 



++ Để DOWNLOAD tài liệu, xin trả lời bài viết này, mình sẽ upload tài liệu cho bạn ngay!

Tóm tắt nội dung:

tổng của số bị chia ,số chia và số dư là 195.tìm số bị chia và số chia.
6.Tổng của hai số có a chữ số là 836.chữ số hàng trăm của số thứ nhất là 5 ,của số thứ hai là 3 .nếu gạch bỏ các chữ số 5 và 3 thì sẽ được hai số có hai chữ số mà số này gấp 2 lần số kia.tìm hai số đó.
7.Một học sinh khi giải bài toán đáng lẽ phải chia 1 số cho 2 và cộng thương tìm được với 3 .nhưng do nhâm lẫn em đó đã nhân số đó với 2 và sau đó lấy tích tìm được trừ đi 3 .mặc dù vậy kết quả vẫn đúng .hỏi số cần chia cho 2 là số nào?
8. Tìm số có ba chữ số .biết rằng chữ số hàng trăm bằng hiệu của chữ số hàng chục với chữ số hàng đơn vị.chia chữ số hàng chục cho chữ số hàng đơn vị thì được thương là 2 và dư 2.tích của số phải tìm với 7 là 1 số có chữ số tận cùng là 1.
9. Tìm số tự nhiên a ≤ 200 .biết rằng khi chia a cho số tự nhiên b thì được thương là 4 và dư 35 .
10. Viết số A bất kì có 3 chữ số ,viết tiếp 3 chữ số đó 1 lần nữa ta được số B có 6 chữ số.chia số B cho 13 ta được số C. chia C cho 11 ta được số D.lại chia số D cho 7.tìm thưởng của phép chia này.
11. Khi chia số M gồm 6 chữ số giống nhau cho số N gồm 4 chữ số giống nhau thì được thương là 233 và số dư là 1 số r nào đó .sau khi bỏ 1 chữ số của số M và 1 chữ số của số N thì thương không đổi và số dư giảm đi 1000.tìm 2 số M và N?
chuyªn ®Ò 3
Lũy thừa vµ c¸c phÐp to¸n
Lũy thừa bậc n của a là tích của n thừa số bằng nhau,mỗi thừa số bằng a:
an = a.a…a ; (n thừa số a, n ≠0).
2.Khi nhân hai lũy thừa của cùng cơ số , ta giữ nguyên cơ số và cộng các số mũ
am an = a(m+n)
Ví dụ .
Hãy chứng tỏ rằng: a) (22)3 = 22 . 3 ; (33)2 = 33 . 2 ; (54)3 = 5 4. 3;
b) (am)n = a m . n ; (m,n N).
Giải:
a) (22)3 = 22.22.22 = 22+ 2+2 = 26 = 22.3
tương tự làm như vậy tao có: (33)2 = 33 . 2 ; (54)3 = 5 4. 3;
b) Một cách tổng quát ta có (am)n = a m . n ; (m,n N).
Ví dụ 9. a) Hãy so sánh : 23.53 với (2.5)3 ; 32 .52 với (2.5)2;
b) Hãy chứng minh rằng : (a.b)n = an .bn ; (n ≠ 0);
Giải . a) 23.53 = 8.125 = 1000;
(2.5)3 = 103 = 1000;
Vậy 23.53 = (2.5)3
Tương tự ta dễ dàng chưng minh được : (a.b)n = an .bn ; (n ≠ 0);
32 .52 = (2.5)2;
Bài tập:
Viết các số sau dưới dạng lũy thừa:
10 ; 100 ; 1000; 10000; 100..0; (n số 0 );
5 ; 25; 625; 3125;
2.So sánh các số sau:
a) 3200 với 23000 ; b) 1255 với 257 ; c)920 với 2713 d)354 với 281;
3.Viết các tích sau đướ dạng lũy thừa:
a) 5.125.625 ; b) 10.100.1000 ; c) 84.165.32; d) 274.8110 ;
4.So sánh:
a) 1030 với 2100 ; b) 540 với 62010 ;
5.Một hình lập phương có cạnh là 5 m.
a) tính thể tích của hình lập phương;
b) nếu cạnh của hình lập phương tăng lên 2 lần , 3 lần thì thể tích của hình lập phương tăng lên bao nhiêu lần.
6. Trong cách viết ở hệ thập phân số 2100 có bao nhiêu chữ số?
C®4.Tính chất chia hết của một tổng,mét hiÖu, mét tÝch
Tính chất 1.nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó :
a m ; b m ; cm a + b + c m .
2. Tính chất 2 ,nếu chỉ có một số hạng của tổng không chia hết cho một số ,các số hạng còn lại đều chia hết cho số đó thì tổng không chia hết cho số đó:
a m ; b m ; cm a + b + c m .
Ví dụ: Cho ba số tự nhiên a, b, c, trong đó a và b là các số chia hết cho 5 dư 3 còn c là số khi chia cho 5 dư 2.
Chứng tổ rằng mỗi tổng (hiệu)sau: a + c ; b + c ; a - b ; đều chia hết cho 5 .
Mỗi tổng(hiệu) sau: a+ b + c ; a + b – c ; a+ c – b ;có chai hết cho 5 không?
Giải : đặt a = 5n + 3 ; b = 5m + 3 ; c = 5p + 2 ;(n,m,p N)
từ đó ta có :
a + c = (5n + 5p + 5) 5 vì các số hạng đều chia hết cho 5.
Tương tự: b + c = 5m + 5p + 5 5 ; a – b = 5n – 5m 5
a + b + c = 5n+ 5m + 5p + 8 không chia hết cho 5 vì 8 5;
tương tự: a + b – c 5 ; a + c – b 5.
Bài tập:
1.Tìm số tự nhiên x để:
a) 113 + x 7
b) 113 + x 13
2. Chứng tỏ rằng:
+ 11 ; - 99;
3.Chứng tỏ rằng:
a) Trong ba số tự nhiên liên tiếp , có một và chỉ một số chia hết cho 3;
b) Trong hai số tự nhiên liên tiếp , cố một và chỉ một số chia hết cho 4;
4. Chứng tỏ rằng :
810 – 8 9 - 8 8 55 ; 7 6 + 7 5 - 7 4 11; 81 7 – 27 9 - 9 13 45; 109 – 10 8 - 10 7 555;
5.Chứng tỏ rằng : nếu số 99 thì + 99 và ngược lại.
6.Chứng tỏ rằng : nếu số 101 thì - 101 và ngược lại
7.Chứng tỏ rằng:
a) Mọi số tự nhiên có ba chữ số giống nhau đều chia hết cho 37;
b) Hiệu giữa số có dạng và số được viết bởi chính các số đó nhưng theo thứ tự ngược lại thì chia hết cho 90.
8. Một số có ba chữ số chia hết cho 12 và chữ số hang trăm bằng chữ số hang chục . Chứng tỏ rằng tổng ba chữ số của số đó chia hết cho 12.
C®6. Dấu hiệu chia hết
Dấu hiệu chia hết cho 9: các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và chỉ những số đó mới chia hết cho 9.
Dấu hiệu chia hết cho 3: các số có tổng các chữ số chia hết cho 3 thì chia hết cho 9 và chỉ những số đó mới chia hết cho 3.Dấu hiệu chia hết cho 2 : các số có chữ số tận cùng là chữ số chẵn thì chia hết cho 2 và chỉ những số đó mới chia hết cho 2.
Dấu hiệu chia hết cho 5: các số có chữ số tận cùng là chữ số 0 hay 5 thì chia hết cho 5 và chỉ những số đó mới chia hết cho 5.
Ví dụ1. Dùng ba chữ số 9, 0 ,5 để ghép thành các số co ba chữ số thỏa mãn một trong các điều kiên sau:
Số đó chia hết cho 5;
Số đó chia hết cho 2 và cho 5.
Giải. a) Một số chia hết cho 5 thì số đó tận cùng bằng 0 hay 5 . vậy có ba số có chữ số chia hết cho 5 là: 950 ; 590 ; 905.
b)Một số chia hết cho 2 và cho 5 thì số đó tận cùng bằng 0 . vậy có hai số có chữ số chia hết cho 2 và cho 5 là: 950 ; 590 ;
Ví dụ2. Cho số . hãy thay x,y bởi các chữ số để số đã cho chia hết cho 3 và 5.
Giải. Số 5 nên y = 0 hay y = 5.
Với y = 0 , ta có số . số này phải chia hết cho 3 , nên 1 + 2 + 3 + x + 4+ +3 3
hay 12 + (x+ 1) 3 , nhưng 1≤ x + 1 ≤ 10 ,nên x + 1 = 3 ; 6 ; 9.
Nếu x + 1 = 3 thì x = 2 ,ta được 1232430
Nếu x + 1 = 6 thì x = 5 ,ta được 1235430
Nếu x + 1 = 3 thì x = ,ta được 1238430
Với y = 5 , ta có số . số này phải chia hết cho 3 , nên 1 + 2 + 3 + x + 4+ +3 + 5 3 hay 18 + x 3 ,nên x = 0 ; 3 ; 6 ; 9. ta có các số sau : 1230435; 1233435; 1236435 và 1239435
Bài tập :
Điền chữ số vào dấu * để được số :
Chia hết cho 2 : ; ; ;
Chia hết cho 5 : ; ; ;
Dùng cả ba số 5,6,9 để ghép thành các số tự nhiên có ba chữ số:
Lớn nhất và chia hết cho 5;
Nhỏ nhất và chia hết cho 2;
3. Tìm tập hợp các số tự nhiên n vừa chia hết cho 2 vừa chia hết cho 5 và
1995 ≤ n ≤2001 .
4. Chứng tỏ rằng trong năm số tự nhiên liên tiếp luốn có một số chia hết cho 5.
5. Chứng tỏ rằng:
a) Trong ba số tự nhiên bất kì bao giờ cũng chọn được hai số có hiệu chia hết cho 2;
b) Trong sáu số tự nhiên bất kì bao giờ cũng chọn được hai số có hiệu chia hết cho 5;
6. Chứng tỏ rằng:
a) (5n + 7 )(4n + 6) 2 với mọi số tự nhiên n;
b) (8n + 1 )(6n + 5) 2 với mọi số tự nhiên n;
7. Người ta viết các số tự nhiên tùy ý sao cho số các số lẻ gấp đôi số các số chẵn. tổng các số đã viết có chia hết cho 2 hay không? Vì sao?
8. Có 5 tờ giấy .người ta xé tờ giấy đó thành 6 mảnh . lại lấy một trong số mảnh giấy nào đó, xé mỗi mảnh thành 6 mảnh.cứ như vậy sau một số lần , người ta đếm được 2001 mảnh giấy.hỏi người ta đếm đúng hay sai?
9. Cho sáu chữ số : 2 , 3 ,5 ,6 ,7 ,9.
a) cố bao nhiêu số có ba chữ s...
Kết nối đề xuất:
Learn Synonym
Advertisement