Sách chưa phân loại, sách kiến thức Ebook download miễn phí
Nội quy chuyên mục: - Hiện nay có khá nhiều trang chia sẻ Tài liệu nhưng mất phí, đó là lý do ket-noi mở ra chuyên mục Tài liệu miễn phí.

- Ai có tài liệu gì hay, hãy đăng lên đây để chia sẻ với mọi người nhé! Bạn chia sẻ hôm nay, ngày mai mọi người sẽ chia sẻ với bạn!
Cách chia sẻ, Upload tài liệu trên ket-noi

- Những bạn nào tích cực chia sẻ tài liệu, sẽ được ưu tiên cung cấp tài liệu khi có yêu cầu.
Nhận download tài liệu miễn phí
By n0jay_c0ajy3uanhnhu3m108
#642564

Download Chuyên đề Toán 6: Dãy số phức tạp miễn phí





Bài toán 3 : Cho A = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10
C = A + 10.11. Tính giá trị của C.
Giải :
Theo cách tính A của bài toán 2, ta được kết quả là : C = 10.11.12/3
Theo c¸ch giải 2 của bài toán 2, ta l¹i cã :
C = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10 + 10.11
= (1.2 + 2.3) + (3.4 + 4.5) + (5.6 + 6.7) + (7.8 + 8.9) + (9.10 + 10.11)
= 2( 1 + 3) + 4( 3 + 5) + 6( 5 + 7) + 8 ( 7 + 9) + 10( 9 + 11)
= 2.4 + 4.8 + 6.12 + 8.16 + 10.20 = 2.2.2 + 2.4.4 + 2.6.6 + 2.8.8 + 2.10.10
 



++ Để DOWNLOAD tài liệu, xin trả lời bài viết này, mình sẽ upload tài liệu cho bạn ngay!

Tóm tắt nội dung:

Người viết : NGuyễn Văn Quyền
D·y Sè phøc t¹p
Bài to¸n 1 : TÝnh c¸c tæng sau
A = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
B = 1 + 3 + 32 + 33 + 34 + ... + 3100
Gi¶i :
2A = 2 + 22 + 23 + ... + 210 + 211 . Khi ®ã : 2A – A = 211 – 1
3B = 3 + 32 + 33 + ... + 3100 + 3101. Khi ®ã : 3B – B = 2B = 3101 – 1 .
VËy B =
Ta nghÜ tíi bµi to¸n tæng qu¸t lµ :
TÝnh tæng S = 1 + a + a2 + a3 + ... + an , a ∈ Z+ , a > 1 vµ n ∈ Z+
Nh©n 2 vÕ cña S víi a ta cã aS = a + a2 + a3 + a4 + ... + an + an+1 . Råi trõ cho S ta ®­îc :
aS – S = ( a – 1)S = an+1 – 1 . VËy : 1 + a + a2 + a3 + ... + an = .
Tõ ®ã ta cã c«ng thøc : an+1 – 1 = ( a – 1)( 1 + a + a2 + a3 + ... + an) .
Bài tËp ¸p dông : Tính các tổng sau:
c) Chøng minh r»ng : 1414 – 1 chia hÕt cho 3
d) Chøng minh r»ng : 20092009 – 1 chia hÕt cho 2008
Bµi to¸n 2 : TÝnh c¸c tæng sau
A = 1 + 32 + 34 + 36 + 38 + ... + 3100
B = 7 + 73 + 75 + 77 + 79 + ... + 799
Gi¶i :
A = 1 + 32 + 34 + 36 + 38 + ... + 3100 . VÊn ®Ò ®Æt ra lµ nh©n hai vÕ cña A víi sè nµo ®Ó khi trõ cho A th× mét lo¹t c¸c lòy thõa bÞ triÖt tiªu ?.Ta thÊy c¸c sè mò liÒn nhau c¸ch nhau 2 ®¬n vÞ nªn ta nh©n hai vÕ víi 32 , råi trõ cho A ta ®­îc :
32A = 32 + 34 + 36 + 38 + ... + 3100 + 3102
A = 1 + 32 + 34 + 36 + 38 + ... + 3100
32A – A = 3102 – 1 . Hay A( 32 – 1) = 3102 – 1 . VËy A = ( 3102 – 1): 8
Tõ kÕt qu¶ nµy suy ra 3102 chia hÕt cho 8
2 ) T­¬ng tù nh­ trªn ta nh©n hai vÕ cña B víi 72 råi trõ cho B , ta ®­îc :
72B = 73 + 75 + 77 + 79 + ... + 799 + 7101
B = 7 + 73 + 75 + 77 + 79 + ... + 799
72B – B = 7101 – 7 , hay B( 72 – 1) = 7101 – 7 . VËy B = ( 7101 – 7) : 48
T­¬ng tù nh­ trªn ta còng suy ra 7101 – 7 chia hÕt cho 48 ; 7100- 1 chia hÕt cho 48
Bµi tËp ¸p dông : TÝnh c¸c tæng sau :
A = 2 + 23 + 25 + 27 + 29 + ... + 22009
B = 1 + 22 + 24 + 26 + 28 + 210 + ... + 2200
C = 5 + 53 + 55 + 57 + 59 + ... + 5101
D = 13 + 133 + 135 + 137 + 139 + ... + 1399
Tổng quát : Tính *
b) , với ()
c) , với ()
Bµi tËp kh¸c : Chøng minh r»ng :
A = 2 + 22 + 23 + 24 + …+ 260 chia hÕt cho 21 vµ 15
B = 1 + 3 + 32 + 33 + 34+ … + 311 chia hÕt cho 52
C = 5 + 52 + 53 + 54 + …+ 512 chia hÕt cho 30 vµ 31
Bài toán 3 : Tính tổng A = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10
Lời giải 1 :
Nhận xét : Khoảng cách giữa 2 thừa số trong mỗi số hạng là 1. Nhân 2 vế của A với 3 lần khoảng cách này ta được :
3A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + 4.5.(6 - 3) + 5.6.(7 - 4) + 6.7.(8 - 5) + 7.8.(9 - 6) + 8.9.(10 - 7) + 9.10.(11 - 8)
= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - … + 8.9.10 - 8.9.10 + 9.10.11
= 9.10.11 = 990.
A = 990/3 = 330
Ta chú ý tới đáp số 990 = 9.10.11, trong đó 9.10 là số hạng cuối cùng của A và 11 là số tự nhiên kề sau của 10, tạo thành tích ba số tự nhiên liên tiếp. Ta cã kết quả tæng qu¸t sau :
A = 1.2 + 2.3 + … + (n - 1).n = (n - 1).n.(n + 1)/3
Lời giải khác :
Lời giải 2 :
3.A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)
= 3.(0.1 + 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)
= [1.(0 + 2) + 3.(2 + 4) + 5.(4 + 6) + 7.(6 + 8) + 9.(8 + 10)].3
= 3.(1.1.2 + 3.3.2 + 5.5.2 + 7.7.2 +9.9.2) = (12 + 32 + 52 + 72 + 92).2.3
= (12 + 32 + 52 + 72 + 92).6 = 990 = 9.10.11
Ta chưa biết cách tính tổng bình phương các số lẻ liên tiếp bắt đầu từ 1, nhưng liên hệ với lời giải 1, ta có :
(12 + 32 + 52 + 72 + 92).6 = 9.10.11, hay
(12 + 32 + 52 + 72 + 92) = 9.10.11/6
Ta có kÕt qu¶ tổng quát :
P = 12 + 32 + 52 + 72 + … + (2n + 1)2 = (2n + 1)(2n + 2)(2n + 3)/6
Bài tËp vËn dông : Tính c¸c tổng sau :
P = 12 + 32 + 52 + 72 + ... + 992
Q = 112 + 132 + 152 + … + 20092.
M = 1.2 + 2.3 + 3.4 + 4.5 + .... + 99.100
Bài toán 3 : Cho A = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10
C = A + 10.11. Tính giá trị của C.
Gi¶i :
Theo cách tính A của bài toán 2, ta được kết quả là : C = 10.11.12/3
Theo c¸ch giải 2 của bài toán 2, ta l¹i cã :
C = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10 + 10.11
= (1.2 + 2.3) + (3.4 + 4.5) + (5.6 + 6.7) + (7.8 + 8.9) + (9.10 + 10.11)
= 2( 1 + 3) + 4( 3 + 5) + 6( 5 + 7) + 8 ( 7 + 9) + 10( 9 + 11)
= 2.4 + 4.8 + 6.12 + 8.16 + 10.20 = 2.2.2 + 2.4.4 + 2.6.6 + 2.8.8 + 2.10.10
= 2.22 + 2.42 + 2.62 + 2.82 + 2.102 = 2.( 22 + 42 + 62 + 82 + 102)
VËy C = 2.(22 + 42 + 62 + 82 + 102) = 10.11.12/3 .Tõ ®ã ta cã :
22 + 42 + 62 + 82 + 102 = 10.11.12/6
Ta lại có kết quả tổng quát lµ :
22 + 42 + 62 + …+ (2n)2 = 2n.(2n + 1).(2n + 2)/6
Bài tËp ¸p dông :
Tính tổng : 202 + 222 + … + 482 + 502.
Cho n thuộc N*. Tính tổng :
n2 + (n + 2)2 + (n + 4)2 + … + (n + 100)2.
Hướng dẫn giải : Xét hai trường hợp n chẵn và n lẻ .Bài toán có một kết quả duy nhất, không phụ thuộc vào tính chẵn lẻ của n.
3.TÝnh tæng A = 1.2 + 2.3 + 3.4 + 4.5 + …+ 999.1000
Bài toán 4 : Chứng minh rằng :
12 + 22 + 32 + … + n2 = n.(n + 1)(2n + 1)/6
Lời giải 1 :
Xét trường hợp n chẵn :
12 + 22 + 32 + … + n2 = (12 + 32 + 52 + … + (n – 1)2) + (22 + 42 + 62 + … + n2)
= [(n – 1).n.(n + 1) + n.(n + 1).(n + 2)]/6
= n.(n + 1).(n -1 + n + 2)/6 = n.(n + 1).(2n + 1)/6
Tương tự với trường hợp n lẻ, ta có
12 + 22 + 32 + … + n2 = (12 + 32 + 52 + … + n 2) + (22 + 42 + 62 + … + (n – 1)2)
= n(n + 1)(n + 2)/6 + (n – 1)n(n + 1)/6
= n(n + 1)(n + 2 + n – 1)/6
= n(n + 1)( 2n + 1) /6 ( ®pcm)
Lêi gi¶i 2 :
S = 1² + 2² + 3² + 4² +…+ n²
S = 1.1 + 2.2 + 3.3 +4.4 + … + n.n = 1.(2-1) + 2(3-1) + 3(4-1) + 4(5-1) + …n[(n+1)-1]
= 1.2 – 1+ 2.3 – 2 + 3.4 – 3 + 4.5 – 4 +…+ n(n + 1 ) – n
= 1.2 + 2.3 + 3.4 + 4.5 + …+ n( n + 1 ) – ( 1 + 2 + 3 +4 + … + n )
= - = n( n + 1 ). ) = n( n + 1)
Vậy S =
VËy ta cã c«ng thøc tÝnh tæng cña d·y sè chÝnh ph­¬ng b¾t ®Çu tõ 1 lµ :
12 + 22 + 32 + … + n2 = n.(n + 1)(2n + 1)/6
Bài tËp ¸p dông : Tính giá trị cña c¸c biÓu thøc sau:
N = 1 + 22 + 32 + 42 + 52 + …+ 992
A = 1 + 4 + 9 + 16 + 25 + 36 + ... + 10000
B = - 12 + 22 – 32 + 42 - … - 192 + 202.
Gîi ý:
Tách B = (22 + 42 + … + 202) – (12 + 32 + …+ 192) ; tính tổng các số trong mỗi ngoặc đơn rồi tìm kết quả của bài toán.
Bµi to¸n 5 . TÝnh : A = 1.3 + 3.5 + 5.7 + … + 97.99
Gi¶i
Nhận xét : Khoảng cách giữa hai thừa số trong mỗi số hạng là 2 , nhân hai vế của A với 3 lần khoảng cách này ta được :
6A = 1.3.6 + 3.5.6 + 5.7.6 + … + 97.99.6
= 1.3.(5 + 1) + 3.5.(7 - 1) + 5.7(9 - 3) + … + 97.99(101 - 95)
= 1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + … + 97.99.101 - 95.97.99
= 1.3.5 + 3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + … + 97.99.101 - 95.97.99
= 3 + 97.99.101
= 161 651
Trong bµi to¸n 2 ta nh©n A víi 3. Trong bµi to¸n 5 ta nh©n A víi 6 Ta cã thÓ nhËn thÊy ®Ó lµm xuÊt hiÖn c¸c h¹ng tö ®èi nhau ta nh©n A víi 3 lÇn kho¶ng c¸ch k gi÷a 2 thõa sè trong mçi h¹ng tö.
Bài toán 6 : Tính A = 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10.
Lời giải :
Trở lại bài toán 2. mỗi hạng tử của tổng A có hai thừa số thì ta nhân A với 3 lần khoảng cách giữa hai thừa số đó. Häc tËp c¸ch ®ã , trong bài này ta nhân hai vế của A với 4 lần khoảng cách đó vì ở đây mỗi hạng tử có 3 thừa số .Ta giải được bài toán nh­ sau :
A = 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10
4A = (1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10).4
4A = [1.2.3.(4 – 0) + 2.3.4.(5 – 1) + … + 8.9.10.(11 – 7)]
4A = (1.2.3.4 – 1.2.3.4 + 2.3.4.5 – 2.3.4.5 + … + 7.8.9.10 – 7.8.9.10 + 8.9.10.11) 4A = 8.9.10.11 = 1980.
Tõ ®ã ta có kết quả tổng quát
A = 1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1).= (n -1).n.(n + 1)(n + 2)/4
Bµi tËp ¸p dông : TÝnh c¸c tæng sau :
A = 1.2.3 + 2.3.4 + 3.4.5 + ...+ 99.100.101
Bµi to¸n 7 : TÝnh : A = 1.3.5 + 3.5.7 + … + 5.7.9 + … + 95.97.99
Gi¶i :
8A = 1.3.5.8 + 3.5.7.8 + 5.7.9.8 + … + 95.97.99.8
= 1.3.5(7 + 1) + 3.5.7(9 - 1) + 5.7.9(11 - 3) + … + 95.97.99(101 - 93)
= 1.3.5.7 + 15 + 3.5.7.9 - 1.3.5.7 + 5.7.9.11 - 3.5.7.9 + … + 95.97.99.101 - 93.95.97.99
= 15 + 95.97.99.101
= 11 517 600
Trong bµi 6 ta nh©n A víi 4 (bèn lÇn kho¶ng c¸ch). Tr...
Kết nối đề xuất:
Thành ngữ tiếng Anh có chứa die
Advertisement
Advertisement